Evaluate
\frac{\sqrt{10000}R^{2}}{84}
Differentiate w.r.t. R
\frac{50R}{21}
Share
Copied to clipboard
R^{2}\times \frac{1}{6\times 14\sqrt{5\times 20\times 10^{-6}}}
Multiply 2 and 3 to get 6.
R^{2}\times \frac{1}{84\sqrt{5\times 20\times 10^{-6}}}
Multiply 6 and 14 to get 84.
R^{2}\times \frac{1}{84\sqrt{100\times 10^{-6}}}
Multiply 5 and 20 to get 100.
R^{2}\times \frac{1}{84\sqrt{100\times \frac{1}{1000000}}}
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
R^{2}\times \frac{1}{84\sqrt{\frac{1}{10000}}}
Multiply 100 and \frac{1}{1000000} to get \frac{1}{10000}.
R^{2}\times \frac{1}{84\times \frac{1}{100}}
Rewrite the square root of the division \frac{1}{10000} as the division of square roots \frac{\sqrt{1}}{\sqrt{10000}}. Take the square root of both numerator and denominator.
R^{2}\times \frac{1}{\frac{21}{25}}
Multiply 84 and \frac{1}{100} to get \frac{21}{25}.
R^{2}\times 1\times \frac{25}{21}
Divide 1 by \frac{21}{25} by multiplying 1 by the reciprocal of \frac{21}{25}.
R^{2}\times \frac{25}{21}
Multiply 1 and \frac{25}{21} to get \frac{25}{21}.
\frac{\mathrm{d}}{\mathrm{d}R}(R^{2}\times \frac{1}{6\times 14\sqrt{5\times 20\times 10^{-6}}})
Multiply 2 and 3 to get 6.
\frac{\mathrm{d}}{\mathrm{d}R}(R^{2}\times \frac{1}{84\sqrt{5\times 20\times 10^{-6}}})
Multiply 6 and 14 to get 84.
\frac{\mathrm{d}}{\mathrm{d}R}(R^{2}\times \frac{1}{84\sqrt{100\times 10^{-6}}})
Multiply 5 and 20 to get 100.
\frac{\mathrm{d}}{\mathrm{d}R}(R^{2}\times \frac{1}{84\sqrt{100\times \frac{1}{1000000}}})
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{\mathrm{d}}{\mathrm{d}R}(R^{2}\times \frac{1}{84\sqrt{\frac{1}{10000}}})
Multiply 100 and \frac{1}{1000000} to get \frac{1}{10000}.
\frac{\mathrm{d}}{\mathrm{d}R}(R^{2}\times \frac{1}{84\times \frac{1}{100}})
Rewrite the square root of the division \frac{1}{10000} as the division of square roots \frac{\sqrt{1}}{\sqrt{10000}}. Take the square root of both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}R}(R^{2}\times \frac{1}{\frac{21}{25}})
Multiply 84 and \frac{1}{100} to get \frac{21}{25}.
\frac{\mathrm{d}}{\mathrm{d}R}(R^{2}\times 1\times \frac{25}{21})
Divide 1 by \frac{21}{25} by multiplying 1 by the reciprocal of \frac{21}{25}.
\frac{\mathrm{d}}{\mathrm{d}R}(R^{2}\times \frac{25}{21})
Multiply 1 and \frac{25}{21} to get \frac{25}{21}.
2\times \frac{25}{21}R^{2-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{50}{21}R^{2-1}
Multiply 2 times \frac{25}{21}.
\frac{50}{21}R^{1}
Subtract 1 from 2.
\frac{50}{21}R
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}