Solve for R
R=\sqrt{3}-3\approx -1.267949192
R=-\sqrt{3}-3\approx -4.732050808
Share
Copied to clipboard
R^{2}+6R=-6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
R^{2}+6R-\left(-6\right)=-6-\left(-6\right)
Add 6 to both sides of the equation.
R^{2}+6R-\left(-6\right)=0
Subtracting -6 from itself leaves 0.
R^{2}+6R+6=0
Subtract -6 from 0.
R=\frac{-6±\sqrt{6^{2}-4\times 6}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
R=\frac{-6±\sqrt{36-4\times 6}}{2}
Square 6.
R=\frac{-6±\sqrt{36-24}}{2}
Multiply -4 times 6.
R=\frac{-6±\sqrt{12}}{2}
Add 36 to -24.
R=\frac{-6±2\sqrt{3}}{2}
Take the square root of 12.
R=\frac{2\sqrt{3}-6}{2}
Now solve the equation R=\frac{-6±2\sqrt{3}}{2} when ± is plus. Add -6 to 2\sqrt{3}.
R=\sqrt{3}-3
Divide -6+2\sqrt{3} by 2.
R=\frac{-2\sqrt{3}-6}{2}
Now solve the equation R=\frac{-6±2\sqrt{3}}{2} when ± is minus. Subtract 2\sqrt{3} from -6.
R=-\sqrt{3}-3
Divide -6-2\sqrt{3} by 2.
R=\sqrt{3}-3 R=-\sqrt{3}-3
The equation is now solved.
R^{2}+6R=-6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
R^{2}+6R+3^{2}=-6+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
R^{2}+6R+9=-6+9
Square 3.
R^{2}+6R+9=3
Add -6 to 9.
\left(R+3\right)^{2}=3
Factor R^{2}+6R+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(R+3\right)^{2}}=\sqrt{3}
Take the square root of both sides of the equation.
R+3=\sqrt{3} R+3=-\sqrt{3}
Simplify.
R=\sqrt{3}-3 R=-\sqrt{3}-3
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}