Solve for Q
\left\{\begin{matrix}Q=\frac{7+8x^{2}-3x^{3}}{rx^{2}}\text{, }&x\neq 0\text{ and }r\neq 0\\Q\in \mathrm{R}\text{, }&x=\sqrt[3]{\frac{\sqrt{78729}}{162}+\frac{2725}{1458}}+\sqrt[3]{-\frac{\sqrt{78729}}{162}+\frac{2725}{1458}}+\frac{8}{9}\text{ and }r=0\end{matrix}\right.
Solve for r
\left\{\begin{matrix}r=\frac{7+8x^{2}-3x^{3}}{Qx^{2}}\text{, }&x\neq 0\text{ and }Q\neq 0\\r\in \mathrm{R}\text{, }&x=\sqrt[3]{\frac{\sqrt{78729}}{162}+\frac{2725}{1458}}+\sqrt[3]{-\frac{\sqrt{78729}}{162}+\frac{2725}{1458}}+\frac{8}{9}\text{ and }Q=0\end{matrix}\right.
Share
Copied to clipboard
Qx^{2}r=5-3x^{3}+2+8x^{2}
Multiply x and x to get x^{2}.
Qx^{2}r=7-3x^{3}+8x^{2}
Add 5 and 2 to get 7.
rx^{2}Q=7+8x^{2}-3x^{3}
The equation is in standard form.
\frac{rx^{2}Q}{rx^{2}}=\frac{7+8x^{2}-3x^{3}}{rx^{2}}
Divide both sides by x^{2}r.
Q=\frac{7+8x^{2}-3x^{3}}{rx^{2}}
Dividing by x^{2}r undoes the multiplication by x^{2}r.
Qx^{2}r=5-3x^{3}+2+8x^{2}
Multiply x and x to get x^{2}.
Qx^{2}r=7-3x^{3}+8x^{2}
Add 5 and 2 to get 7.
Qx^{2}r=7+8x^{2}-3x^{3}
The equation is in standard form.
\frac{Qx^{2}r}{Qx^{2}}=\frac{7+8x^{2}-3x^{3}}{Qx^{2}}
Divide both sides by Qx^{2}.
r=\frac{7+8x^{2}-3x^{3}}{Qx^{2}}
Dividing by Qx^{2} undoes the multiplication by Qx^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}