Solve for Q
Q=\frac{4000000000000000}{905802919890931R}
R\neq 0
Solve for R
R=\frac{4000000000000000}{905802919890931Q}
Q\neq 0
Share
Copied to clipboard
Q R = \frac{6.8}{1.5398649638145827}
Evaluate trigonometric functions in the problem
QR=\frac{68000000000000000}{15398649638145827}
Expand \frac{6.8}{1.5398649638145827} by multiplying both numerator and the denominator by 10000000000000000.
QR=\frac{4000000000000000}{905802919890931}
Reduce the fraction \frac{68000000000000000}{15398649638145827} to lowest terms by extracting and canceling out 17.
RQ=\frac{4000000000000000}{905802919890931}
The equation is in standard form.
\frac{RQ}{R}=\frac{\frac{4000000000000000}{905802919890931}}{R}
Divide both sides by R.
Q=\frac{\frac{4000000000000000}{905802919890931}}{R}
Dividing by R undoes the multiplication by R.
Q=\frac{4000000000000000}{905802919890931R}
Divide \frac{4000000000000000}{905802919890931} by R.
Q R = \frac{6.8}{1.5398649638145827}
Evaluate trigonometric functions in the problem
QR=\frac{68000000000000000}{15398649638145827}
Expand \frac{6.8}{1.5398649638145827} by multiplying both numerator and the denominator by 10000000000000000.
QR=\frac{4000000000000000}{905802919890931}
Reduce the fraction \frac{68000000000000000}{15398649638145827} to lowest terms by extracting and canceling out 17.
\frac{QR}{Q}=\frac{\frac{4000000000000000}{905802919890931}}{Q}
Divide both sides by Q.
R=\frac{\frac{4000000000000000}{905802919890931}}{Q}
Dividing by Q undoes the multiplication by Q.
R=\frac{4000000000000000}{905802919890931Q}
Divide \frac{4000000000000000}{905802919890931} by Q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}