Solve for P (complex solution)
\left\{\begin{matrix}P=\frac{\left(x-a\right)^{2}}{r}\text{, }&r\neq 0\\P\in \mathrm{C}\text{, }&x=a\text{ and }r=0\end{matrix}\right.
Solve for P
\left\{\begin{matrix}P=\frac{\left(x-a\right)^{2}}{r}\text{, }&r\neq 0\\P\in \mathrm{R}\text{, }&x=a\text{ and }r=0\end{matrix}\right.
Solve for a (complex solution)
a=\sqrt{P}\sqrt{r}+x
a=-\sqrt{P}\sqrt{r}+x
Solve for a
a=\sqrt{Pr}+x
a=-\sqrt{Pr}+x\text{, }\left(r\geq 0\text{ and }P\geq 0\right)\text{ or }\left(P\leq 0\text{ and }r\leq 0\right)
Share
Copied to clipboard
Pr=x^{2}-2xa+a^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(x-a\right)^{2}.
rP=x^{2}-2ax+a^{2}
The equation is in standard form.
\frac{rP}{r}=\frac{\left(x-a\right)^{2}}{r}
Divide both sides by r.
P=\frac{\left(x-a\right)^{2}}{r}
Dividing by r undoes the multiplication by r.
Pr=x^{2}-2xa+a^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(x-a\right)^{2}.
rP=x^{2}-2ax+a^{2}
The equation is in standard form.
\frac{rP}{r}=\frac{\left(x-a\right)^{2}}{r}
Divide both sides by r.
P=\frac{\left(x-a\right)^{2}}{r}
Dividing by r undoes the multiplication by r.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}