Solve for C
\left\{\begin{matrix}C=-\frac{i\left(in+100Lf-100P_{150}f\right)}{100H}\text{, }&H\neq 0\text{ and }f\neq 0\\C\in \mathrm{C}\text{, }&n=-100if\left(P_{150}-L\right)\text{ and }H=0\text{ and }f\neq 0\end{matrix}\right.
Solve for H
\left\{\begin{matrix}H=-\frac{i\left(in+100Lf-100P_{150}f\right)}{100C}\text{, }&C\neq 0\text{ and }f\neq 0\\H\in \mathrm{C}\text{, }&n=-100if\left(P_{150}-L\right)\text{ and }C=0\text{ and }f\neq 0\end{matrix}\right.
Share
Copied to clipboard
P_{150}f=fL+\left(\frac{1n}{100}-CH\right)i
Multiply both sides of the equation by f.
P_{150}f=fL+i\times \frac{1n}{100}-iCH
Use the distributive property to multiply \frac{1n}{100}-CH by i.
fL+i\times \frac{1n}{100}-iCH=P_{150}f
Swap sides so that all variable terms are on the left hand side.
i\times \frac{1n}{100}-iCH=P_{150}f-fL
Subtract fL from both sides.
-iCH=P_{150}f-fL-i\times \frac{1n}{100}
Subtract i\times \frac{1n}{100} from both sides.
-100iCH=100\left(P_{150}f-fL\right)-i\times 1n
Multiply both sides of the equation by 100.
-100iCH=100\left(P_{150}f-Lf\right)-in
Reorder the terms.
-100iCH=100P_{150}f-100Lf-in
Use the distributive property to multiply 100 by P_{150}f-Lf.
\left(-100iH\right)C=-in+100P_{150}f-100Lf
The equation is in standard form.
\frac{\left(-100iH\right)C}{-100iH}=\frac{-in+100P_{150}f-100Lf}{-100iH}
Divide both sides by -100iH.
C=\frac{-in+100P_{150}f-100Lf}{-100iH}
Dividing by -100iH undoes the multiplication by -100iH.
C=\frac{i\left(-in+100P_{150}f-100Lf\right)}{100H}
Divide 100P_{150}f-100Lf-in by -100iH.
P_{150}f=fL+\left(\frac{1n}{100}-CH\right)i
Multiply both sides of the equation by f.
P_{150}f=fL+i\times \frac{1n}{100}-iCH
Use the distributive property to multiply \frac{1n}{100}-CH by i.
fL+i\times \frac{1n}{100}-iCH=P_{150}f
Swap sides so that all variable terms are on the left hand side.
i\times \frac{1n}{100}-iCH=P_{150}f-fL
Subtract fL from both sides.
-iCH=P_{150}f-fL-i\times \frac{1n}{100}
Subtract i\times \frac{1n}{100} from both sides.
-100iCH=100\left(P_{150}f-fL\right)-i\times 1n
Multiply both sides of the equation by 100.
-100iCH=100\left(P_{150}f-Lf\right)-in
Reorder the terms.
-100iCH=100P_{150}f-100Lf-in
Use the distributive property to multiply 100 by P_{150}f-Lf.
\left(-100iC\right)H=-in+100P_{150}f-100Lf
The equation is in standard form.
\frac{\left(-100iC\right)H}{-100iC}=\frac{-in+100P_{150}f-100Lf}{-100iC}
Divide both sides by -100iC.
H=\frac{-in+100P_{150}f-100Lf}{-100iC}
Dividing by -100iC undoes the multiplication by -100iC.
H=\frac{i\left(-in+100P_{150}f-100Lf\right)}{100C}
Divide 100P_{150}f-100Lf-in by -100iC.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}