Solve for P_1
P_{1}=-\frac{81P_{2}n\theta -x_{2}-x_{1}}{81n\theta }
\theta \neq 0\text{ and }n\neq 0
Solve for P_2
P_{2}=-\frac{81P_{1}n\theta -x_{2}-x_{1}}{81n\theta }
\theta \neq 0\text{ and }n\neq 0
Graph
Share
Copied to clipboard
\theta P_{1}+\theta P_{2}=\frac{x_{1}+x_{2}}{81n}
Multiply both sides of the equation by \theta .
\theta P_{1}=\frac{x_{1}+x_{2}}{81n}-\theta P_{2}
Subtract \theta P_{2} from both sides.
\theta P_{1}=\frac{x_{1}+x_{2}}{81n}-\frac{\theta P_{2}\times 81n}{81n}
To add or subtract expressions, expand them to make their denominators the same. Multiply \theta P_{2} times \frac{81n}{81n}.
\theta P_{1}=\frac{x_{1}+x_{2}-\theta P_{2}\times 81n}{81n}
Since \frac{x_{1}+x_{2}}{81n} and \frac{\theta P_{2}\times 81n}{81n} have the same denominator, subtract them by subtracting their numerators.
\theta P_{1}=\frac{x_{1}+x_{2}-81\theta P_{2}n}{81n}
Do the multiplications in x_{1}+x_{2}-\theta P_{2}\times 81n.
\theta P_{1}\times 81n=x_{1}+x_{2}-81\theta P_{2}n
Multiply both sides of the equation by 81n.
81P_{1}n\theta =x_{1}+x_{2}-81P_{2}n\theta
Reorder the terms.
81n\theta P_{1}=x_{1}+x_{2}-81P_{2}n\theta
The equation is in standard form.
\frac{81n\theta P_{1}}{81n\theta }=\frac{x_{1}+x_{2}-81P_{2}n\theta }{81n\theta }
Divide both sides by 81n\theta .
P_{1}=\frac{x_{1}+x_{2}-81P_{2}n\theta }{81n\theta }
Dividing by 81n\theta undoes the multiplication by 81n\theta .
\theta P_{1}+\theta P_{2}=\frac{x_{1}+x_{2}}{81n}
Multiply both sides of the equation by \theta .
\theta P_{2}=\frac{x_{1}+x_{2}}{81n}-\theta P_{1}
Subtract \theta P_{1} from both sides.
\theta P_{2}=\frac{x_{1}+x_{2}}{81n}-\frac{\theta P_{1}\times 81n}{81n}
To add or subtract expressions, expand them to make their denominators the same. Multiply \theta P_{1} times \frac{81n}{81n}.
\theta P_{2}=\frac{x_{1}+x_{2}-\theta P_{1}\times 81n}{81n}
Since \frac{x_{1}+x_{2}}{81n} and \frac{\theta P_{1}\times 81n}{81n} have the same denominator, subtract them by subtracting their numerators.
\theta P_{2}=\frac{x_{1}+x_{2}-81\theta P_{1}n}{81n}
Do the multiplications in x_{1}+x_{2}-\theta P_{1}\times 81n.
\theta P_{2}\times 81n=x_{1}+x_{2}-81\theta P_{1}n
Multiply both sides of the equation by 81n.
81P_{2}n\theta =x_{1}+x_{2}-81P_{1}n\theta
Reorder the terms.
81n\theta P_{2}=x_{1}+x_{2}-81P_{1}n\theta
The equation is in standard form.
\frac{81n\theta P_{2}}{81n\theta }=\frac{x_{1}+x_{2}-81P_{1}n\theta }{81n\theta }
Divide both sides by 81n\theta .
P_{2}=\frac{x_{1}+x_{2}-81P_{1}n\theta }{81n\theta }
Dividing by 81n\theta undoes the multiplication by 81n\theta .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}