Factor
2\left(1-x\right)\left(3x-1\right)
Evaluate
-6x^{2}+8x-2
Graph
Share
Copied to clipboard
2\left(-3x^{2}+4x-1\right)
Factor out 2.
a+b=4 ab=-3\left(-1\right)=3
Consider -3x^{2}+4x-1. Factor the expression by grouping. First, the expression needs to be rewritten as -3x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
a=3 b=1
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(-3x^{2}+3x\right)+\left(x-1\right)
Rewrite -3x^{2}+4x-1 as \left(-3x^{2}+3x\right)+\left(x-1\right).
3x\left(-x+1\right)-\left(-x+1\right)
Factor out 3x in the first and -1 in the second group.
\left(-x+1\right)\left(3x-1\right)
Factor out common term -x+1 by using distributive property.
2\left(-x+1\right)\left(3x-1\right)
Rewrite the complete factored expression.
-6x^{2}+8x-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\left(-6\right)\left(-2\right)}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\left(-6\right)\left(-2\right)}}{2\left(-6\right)}
Square 8.
x=\frac{-8±\sqrt{64+24\left(-2\right)}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-8±\sqrt{64-48}}{2\left(-6\right)}
Multiply 24 times -2.
x=\frac{-8±\sqrt{16}}{2\left(-6\right)}
Add 64 to -48.
x=\frac{-8±4}{2\left(-6\right)}
Take the square root of 16.
x=\frac{-8±4}{-12}
Multiply 2 times -6.
x=-\frac{4}{-12}
Now solve the equation x=\frac{-8±4}{-12} when ± is plus. Add -8 to 4.
x=\frac{1}{3}
Reduce the fraction \frac{-4}{-12} to lowest terms by extracting and canceling out 4.
x=-\frac{12}{-12}
Now solve the equation x=\frac{-8±4}{-12} when ± is minus. Subtract 4 from -8.
x=1
Divide -12 by -12.
-6x^{2}+8x-2=-6\left(x-\frac{1}{3}\right)\left(x-1\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{3} for x_{1} and 1 for x_{2}.
-6x^{2}+8x-2=-6\times \frac{-3x+1}{-3}\left(x-1\right)
Subtract \frac{1}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-6x^{2}+8x-2=2\left(-3x+1\right)\left(x-1\right)
Cancel out 3, the greatest common factor in -6 and 3.
x ^ 2 -\frac{4}{3}x +\frac{1}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{4}{3} rs = \frac{1}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{2}{3} - u s = \frac{2}{3} + u
Two numbers r and s sum up to \frac{4}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{4}{3} = \frac{2}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{2}{3} - u) (\frac{2}{3} + u) = \frac{1}{3}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{1}{3}
\frac{4}{9} - u^2 = \frac{1}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{1}{3}-\frac{4}{9} = -\frac{1}{9}
Simplify the expression by subtracting \frac{4}{9} on both sides
u^2 = \frac{1}{9} u = \pm\sqrt{\frac{1}{9}} = \pm \frac{1}{3}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{2}{3} - \frac{1}{3} = 0.333 s = \frac{2}{3} + \frac{1}{3} = 1
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}