Factor
-\left(3x-1\right)\left(7x+5\right)
Evaluate
5-8x-21x^{2}
Graph
Share
Copied to clipboard
a+b=-8 ab=-21\times 5=-105
Factor the expression by grouping. First, the expression needs to be rewritten as -21x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
1,-105 3,-35 5,-21 7,-15
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -105.
1-105=-104 3-35=-32 5-21=-16 7-15=-8
Calculate the sum for each pair.
a=7 b=-15
The solution is the pair that gives sum -8.
\left(-21x^{2}+7x\right)+\left(-15x+5\right)
Rewrite -21x^{2}-8x+5 as \left(-21x^{2}+7x\right)+\left(-15x+5\right).
-7x\left(3x-1\right)-5\left(3x-1\right)
Factor out -7x in the first and -5 in the second group.
\left(3x-1\right)\left(-7x-5\right)
Factor out common term 3x-1 by using distributive property.
-21x^{2}-8x+5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-21\right)\times 5}}{2\left(-21\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-21\right)\times 5}}{2\left(-21\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+84\times 5}}{2\left(-21\right)}
Multiply -4 times -21.
x=\frac{-\left(-8\right)±\sqrt{64+420}}{2\left(-21\right)}
Multiply 84 times 5.
x=\frac{-\left(-8\right)±\sqrt{484}}{2\left(-21\right)}
Add 64 to 420.
x=\frac{-\left(-8\right)±22}{2\left(-21\right)}
Take the square root of 484.
x=\frac{8±22}{2\left(-21\right)}
The opposite of -8 is 8.
x=\frac{8±22}{-42}
Multiply 2 times -21.
x=\frac{30}{-42}
Now solve the equation x=\frac{8±22}{-42} when ± is plus. Add 8 to 22.
x=-\frac{5}{7}
Reduce the fraction \frac{30}{-42} to lowest terms by extracting and canceling out 6.
x=-\frac{14}{-42}
Now solve the equation x=\frac{8±22}{-42} when ± is minus. Subtract 22 from 8.
x=\frac{1}{3}
Reduce the fraction \frac{-14}{-42} to lowest terms by extracting and canceling out 14.
-21x^{2}-8x+5=-21\left(x-\left(-\frac{5}{7}\right)\right)\left(x-\frac{1}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{5}{7} for x_{1} and \frac{1}{3} for x_{2}.
-21x^{2}-8x+5=-21\left(x+\frac{5}{7}\right)\left(x-\frac{1}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-21x^{2}-8x+5=-21\times \frac{-7x-5}{-7}\left(x-\frac{1}{3}\right)
Add \frac{5}{7} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-21x^{2}-8x+5=-21\times \frac{-7x-5}{-7}\times \frac{-3x+1}{-3}
Subtract \frac{1}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-21x^{2}-8x+5=-21\times \frac{\left(-7x-5\right)\left(-3x+1\right)}{-7\left(-3\right)}
Multiply \frac{-7x-5}{-7} times \frac{-3x+1}{-3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-21x^{2}-8x+5=-21\times \frac{\left(-7x-5\right)\left(-3x+1\right)}{21}
Multiply -7 times -3.
-21x^{2}-8x+5=-\left(-7x-5\right)\left(-3x+1\right)
Cancel out 21, the greatest common factor in -21 and 21.
x ^ 2 +\frac{8}{21}x -\frac{5}{21} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{8}{21} rs = -\frac{5}{21}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{4}{21} - u s = -\frac{4}{21} + u
Two numbers r and s sum up to -\frac{8}{21} exactly when the average of the two numbers is \frac{1}{2}*-\frac{8}{21} = -\frac{4}{21}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{4}{21} - u) (-\frac{4}{21} + u) = -\frac{5}{21}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{5}{21}
\frac{16}{441} - u^2 = -\frac{5}{21}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{5}{21}-\frac{16}{441} = -\frac{121}{441}
Simplify the expression by subtracting \frac{16}{441} on both sides
u^2 = \frac{121}{441} u = \pm\sqrt{\frac{121}{441}} = \pm \frac{11}{21}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{4}{21} - \frac{11}{21} = -0.714 s = -\frac{4}{21} + \frac{11}{21} = 0.333
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}