Solve for P, Q
P=16\sqrt{2}+8\approx 30.627416998
Q=32
Share
Copied to clipboard
P=8+8\times 2\sqrt{2}
Consider the first equation. Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
P=8+16\sqrt{2}
Multiply 8 and 2 to get 16.
Q=\left(2\sqrt{2}+\sqrt{8}\right)^{2}
Consider the second equation. Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
Q=\left(2\sqrt{2}+2\sqrt{2}\right)^{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
Q=\left(4\sqrt{2}\right)^{2}
Combine 2\sqrt{2} and 2\sqrt{2} to get 4\sqrt{2}.
Q=4^{2}\left(\sqrt{2}\right)^{2}
Expand \left(4\sqrt{2}\right)^{2}.
Q=16\left(\sqrt{2}\right)^{2}
Calculate 4 to the power of 2 and get 16.
Q=16\times 2
The square of \sqrt{2} is 2.
Q=32
Multiply 16 and 2 to get 32.
P=8+16\sqrt{2} Q=32
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}