Solve for a
a=\frac{2\left(P^{2}-1\right)}{3}
P\geq 0
Solve for P
P=\frac{\sqrt{6a+4}}{2}
a\geq -\frac{2}{3}
Share
Copied to clipboard
P=\sqrt{\frac{3}{2}a+1}
Divide each term of 3a+2 by 2 to get \frac{3}{2}a+1.
\sqrt{\frac{3}{2}a+1}=P
Swap sides so that all variable terms are on the left hand side.
\frac{3}{2}a+1=P^{2}
Square both sides of the equation.
\frac{3}{2}a+1-1=P^{2}-1
Subtract 1 from both sides of the equation.
\frac{3}{2}a=P^{2}-1
Subtracting 1 from itself leaves 0.
\frac{\frac{3}{2}a}{\frac{3}{2}}=\frac{P^{2}-1}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{P^{2}-1}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
a=\frac{2P^{2}-2}{3}
Divide P^{2}-1 by \frac{3}{2} by multiplying P^{2}-1 by the reciprocal of \frac{3}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}