Solve for R
R\neq 0
P=\frac{U_{0}^{2}}{2}
Solve for P
P=\frac{U_{0}^{2}}{2}
R\neq 0
Share
Copied to clipboard
P\times 2R=\frac{1}{2}\times 2U_{0}^{2}R
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2R, the least common multiple of 2,R.
P\times 2R=U_{0}^{2}R
Multiply \frac{1}{2} and 2 to get 1.
P\times 2R-U_{0}^{2}R=0
Subtract U_{0}^{2}R from both sides.
2PR-RU_{0}^{2}=0
Reorder the terms.
\left(2P-U_{0}^{2}\right)R=0
Combine all terms containing R.
R=0
Divide 0 by 2P-U_{0}^{2}.
R\in \emptyset
Variable R cannot be equal to 0.
P=\frac{1}{2}U_{0}^{2}
Cancel out R in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}