Skip to main content
Solve for P
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{2+x}{2-x}+\frac{4x^{2}}{x^{2}-4}-\frac{2-x}{2+x}\right)
Variable P cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by P.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{2+x}{2-x}+\frac{4x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
Factor x^{2}-4.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{\left(2+x\right)\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{4x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2-x and \left(x-2\right)\left(x+2\right) is \left(x-2\right)\left(x+2\right). Multiply \frac{2+x}{2-x} times \frac{-\left(x+2\right)}{-\left(x+2\right)}.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{\left(2+x\right)\left(-1\right)\left(x+2\right)+4x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
Since \frac{\left(2+x\right)\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{4x^{2}}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{-2x-4-x^{2}-2x+4x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
Do the multiplications in \left(2+x\right)\left(-1\right)\left(x+2\right)+4x^{2}.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{-4x-4+3x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
Combine like terms in -2x-4-x^{2}-2x+4x^{2}.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{\left(x-2\right)\left(3x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
Factor the expressions that are not already factored in \frac{-4x-4+3x^{2}}{\left(x-2\right)\left(x+2\right)}.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{3x+2}{x+2}-\frac{2-x}{2+x}\right)
Cancel out x-2 in both numerator and denominator.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\times \frac{3x+2-\left(2-x\right)}{x+2}
Since \frac{3x+2}{x+2} and \frac{2-x}{2+x} have the same denominator, subtract them by subtracting their numerators.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\times \frac{3x+2-2+x}{x+2}
Do the multiplications in 3x+2-\left(2-x\right).
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\times \frac{4x}{x+2}
Combine like terms in 3x+2-2+x.
P=\frac{P\times 4x}{x+2}x\left(-3+x\right)^{-1}\left(2-x\right)
Express P\times \frac{4x}{x+2} as a single fraction.
P=2\times \frac{P\times 4x}{x+2}x\left(-3+x\right)^{-1}-\frac{4Px}{x+2}\left(-3+x\right)^{-1}x^{2}
Use the distributive property to multiply \frac{P\times 4x}{x+2}x\left(-3+x\right)^{-1} by 2-x.
P=\frac{2P\times 4x}{x+2}x\left(-3+x\right)^{-1}-\frac{4Px}{x+2}\left(-3+x\right)^{-1}x^{2}
Express 2\times \frac{P\times 4x}{x+2} as a single fraction.
P=\frac{2P\times 4xx}{x+2}\left(-3+x\right)^{-1}-\frac{4Px}{x+2}\left(-3+x\right)^{-1}x^{2}
Express \frac{2P\times 4x}{x+2}x as a single fraction.
P=\frac{2P\times 4xx\left(-3+x\right)^{-1}}{x+2}-\frac{4Px}{x+2}\left(-3+x\right)^{-1}x^{2}
Express \frac{2P\times 4xx}{x+2}\left(-3+x\right)^{-1} as a single fraction.
P=\frac{2P\times 4xx\left(-3+x\right)^{-1}}{x+2}-\frac{4Px\left(-3+x\right)^{-1}}{x+2}x^{2}
Express \frac{4Px}{x+2}\left(-3+x\right)^{-1} as a single fraction.
P=\frac{2P\times 4xx\left(-3+x\right)^{-1}}{x+2}-\frac{4Px\left(-3+x\right)^{-1}x^{2}}{x+2}
Express \frac{4Px\left(-3+x\right)^{-1}}{x+2}x^{2} as a single fraction.
P=\frac{2P\times 4xx\left(-3+x\right)^{-1}-4Px\left(-3+x\right)^{-1}x^{2}}{x+2}
Since \frac{2P\times 4xx\left(-3+x\right)^{-1}}{x+2} and \frac{4Px\left(-3+x\right)^{-1}x^{2}}{x+2} have the same denominator, subtract them by subtracting their numerators.
P=\frac{2P\times 4x^{2}\left(-3+x\right)^{-1}-4Px\left(-3+x\right)^{-1}x^{2}}{x+2}
Multiply x and x to get x^{2}.
P=\frac{2P\times 4x^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}}{x+2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
P=\frac{8Px^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}}{x+2}
Multiply 2 and 4 to get 8.
P-\frac{8Px^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}}{x+2}=0
Subtract \frac{8Px^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}}{x+2} from both sides.
\left(x+2\right)P-\left(8Px^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}\right)=0
Multiply both sides of the equation by x+2.
-\left(-4\times \frac{1}{x-3}Px^{3}+8\times \frac{1}{x-3}Px^{2}\right)+P\left(x+2\right)=0
Reorder the terms.
-\left(-4\times \frac{1}{x-3}Px^{3}+8\times \frac{1}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
Multiply both sides of the equation by x-3.
-\left(\frac{-4}{x-3}Px^{3}+8\times \frac{1}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
Express -4\times \frac{1}{x-3} as a single fraction.
-\left(\frac{-4P}{x-3}x^{3}+8\times \frac{1}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
Express \frac{-4}{x-3}P as a single fraction.
-\left(\frac{-4Px^{3}}{x-3}+8\times \frac{1}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
Express \frac{-4P}{x-3}x^{3} as a single fraction.
-\left(\frac{-4Px^{3}}{x-3}+\frac{8}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
Express 8\times \frac{1}{x-3} as a single fraction.
-\left(\frac{-4Px^{3}}{x-3}+\frac{8P}{x-3}x^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
Express \frac{8}{x-3}P as a single fraction.
-\left(\frac{-4Px^{3}}{x-3}+\frac{8Px^{2}}{x-3}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
Express \frac{8P}{x-3}x^{2} as a single fraction.
-\frac{-4Px^{3}+8Px^{2}}{x-3}\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
Since \frac{-4Px^{3}}{x-3} and \frac{8Px^{2}}{x-3} have the same denominator, add them by adding their numerators.
-\frac{\left(-4Px^{3}+8Px^{2}\right)\left(x-3\right)}{x-3}+P\left(x+2\right)\left(x-3\right)=0
Express \frac{-4Px^{3}+8Px^{2}}{x-3}\left(x-3\right) as a single fraction.
-\left(-4Px^{3}+8Px^{2}\right)+P\left(x+2\right)\left(x-3\right)=0
Cancel out x-3 in both numerator and denominator.
4Px^{3}-8Px^{2}+P\left(x+2\right)\left(x-3\right)=0
To find the opposite of -4Px^{3}+8Px^{2}, find the opposite of each term.
4Px^{3}-8Px^{2}+\left(Px+2P\right)\left(x-3\right)=0
Use the distributive property to multiply P by x+2.
4Px^{3}-8Px^{2}+Px^{2}-Px-6P=0
Use the distributive property to multiply Px+2P by x-3 and combine like terms.
4Px^{3}-7Px^{2}-Px-6P=0
Combine -8Px^{2} and Px^{2} to get -7Px^{2}.
\left(4x^{3}-7x^{2}-x-6\right)P=0
Combine all terms containing P.
P=0
Divide 0 by -x-7x^{2}-6+4x^{3}.
P\in \emptyset
Variable P cannot be equal to 0.