Solve for I
\left\{\begin{matrix}I=\frac{\sin(a_{0})}{O}\text{, }&O\neq 0\\I\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }a_{0}=\pi n_{1}\text{ and }O=0\end{matrix}\right.
Solve for O
\left\{\begin{matrix}O=\frac{\sin(a_{0})}{I}\text{, }&I\neq 0\\O\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }a_{0}=\pi n_{1}\text{ and }I=0\end{matrix}\right.
Share
Copied to clipboard
OI=\sin(a_{0})
The equation is in standard form.
\frac{OI}{O}=\frac{\sin(a_{0})}{O}
Divide both sides by O.
I=\frac{\sin(a_{0})}{O}
Dividing by O undoes the multiplication by O.
IO=\sin(a_{0})
The equation is in standard form.
\frac{IO}{I}=\frac{\sin(a_{0})}{I}
Divide both sides by I.
O=\frac{\sin(a_{0})}{I}
Dividing by I undoes the multiplication by I.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}