Solve for O
O=\left(\frac{2x-1}{x-3}\right)^{2}
x\neq 3
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{3\sqrt{O}-1}{\sqrt{O}-2}\text{; }x=\frac{3\sqrt{O}+1}{\sqrt{O}+2}\text{, }&O\neq 4\\x=\frac{7}{4}\text{, }&O=4\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{3\sqrt{O}-1}{\sqrt{O}-2}\text{; }x=\frac{3\sqrt{O}+1}{\sqrt{O}+2}\text{, }&O\neq 4\text{ and }O\geq 0\\x=\frac{7}{4}\text{, }&O=4\end{matrix}\right.
Graph
Share
Copied to clipboard
O\left(x^{2}-6x+9\right)=\left(2x-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
Ox^{2}-6Ox+9O=\left(2x-1\right)^{2}
Use the distributive property to multiply O by x^{2}-6x+9.
Ox^{2}-6Ox+9O=4x^{2}-4x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
\left(x^{2}-6x+9\right)O=4x^{2}-4x+1
Combine all terms containing O.
\frac{\left(x^{2}-6x+9\right)O}{x^{2}-6x+9}=\frac{\left(2x-1\right)^{2}}{x^{2}-6x+9}
Divide both sides by x^{2}-6x+9.
O=\frac{\left(2x-1\right)^{2}}{x^{2}-6x+9}
Dividing by x^{2}-6x+9 undoes the multiplication by x^{2}-6x+9.
O=\frac{\left(2x-1\right)^{2}}{\left(x-3\right)^{2}}
Divide \left(2x-1\right)^{2} by x^{2}-6x+9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}