Skip to main content
Solve for O
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

O\left(x^{2}-6x+9\right)=\left(2x-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
Ox^{2}-6Ox+9O=\left(2x-1\right)^{2}
Use the distributive property to multiply O by x^{2}-6x+9.
Ox^{2}-6Ox+9O=4x^{2}-4x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
\left(x^{2}-6x+9\right)O=4x^{2}-4x+1
Combine all terms containing O.
\frac{\left(x^{2}-6x+9\right)O}{x^{2}-6x+9}=\frac{\left(2x-1\right)^{2}}{x^{2}-6x+9}
Divide both sides by x^{2}-6x+9.
O=\frac{\left(2x-1\right)^{2}}{x^{2}-6x+9}
Dividing by x^{2}-6x+9 undoes the multiplication by x^{2}-6x+9.
O=\frac{\left(2x-1\right)^{2}}{\left(x-3\right)^{2}}
Divide \left(2x-1\right)^{2} by x^{2}-6x+9.