Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

O\times \frac{\left(\frac{\left(2^{9}\right)^{2}}{\left(2^{5}\right)^{3}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
To multiply powers of the same base, add their exponents. Add 5 and 4 to get 9.
O\times \frac{\left(\frac{2^{18}}{\left(2^{5}\right)^{3}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 9 and 2 to get 18.
O\times \frac{\left(\frac{2^{18}}{2^{15}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
O\times \frac{\left(2^{3}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 15 from 18 to get 3.
O\times \frac{2^{6}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
O\times \frac{2^{6}\times 5^{1}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 11 from 12 to get 1.
O\times 2^{2}\times 5^{1}-\left(5\times 2^{2}-4^{2}\right)
Cancel out 2^{4} in both numerator and denominator.
O\times 2^{2}\times 5-\left(5\times 2^{2}-4^{2}\right)
Calculate 5 to the power of 1 and get 5.
O\times 2^{2}\times 5-\left(5\times 4-4^{2}\right)
Calculate 2 to the power of 2 and get 4.
O\times 2^{2}\times 5-\left(20-4^{2}\right)
Multiply 5 and 4 to get 20.
O\times 2^{2}\times 5-\left(20-16\right)
Calculate 4 to the power of 2 and get 16.
O\times 2^{2}\times 5-4
Subtract 16 from 20 to get 4.
O\times 4\times 5-4
Calculate 2 to the power of 2 and get 4.
O\times 20-4
Multiply 4 and 5 to get 20.
O\times \frac{\left(\frac{\left(2^{9}\right)^{2}}{\left(2^{5}\right)^{3}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
To multiply powers of the same base, add their exponents. Add 5 and 4 to get 9.
O\times \frac{\left(\frac{2^{18}}{\left(2^{5}\right)^{3}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 9 and 2 to get 18.
O\times \frac{\left(\frac{2^{18}}{2^{15}}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
O\times \frac{\left(2^{3}\right)^{2}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 15 from 18 to get 3.
O\times \frac{2^{6}\times \frac{5^{12}}{5^{11}}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
O\times \frac{2^{6}\times 5^{1}}{2^{4}}-\left(5\times 2^{2}-4^{2}\right)
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 11 from 12 to get 1.
O\times 2^{2}\times 5^{1}-\left(5\times 2^{2}-4^{2}\right)
Cancel out 2^{4} in both numerator and denominator.
O\times 2^{2}\times 5-\left(5\times 2^{2}-4^{2}\right)
Calculate 5 to the power of 1 and get 5.
O\times 2^{2}\times 5-\left(5\times 4-4^{2}\right)
Calculate 2 to the power of 2 and get 4.
O\times 2^{2}\times 5-\left(20-4^{2}\right)
Multiply 5 and 4 to get 20.
O\times 2^{2}\times 5-\left(20-16\right)
Calculate 4 to the power of 2 and get 16.
O\times 2^{2}\times 5-4
Subtract 16 from 20 to get 4.
O\times 4\times 5-4
Calculate 2 to the power of 2 and get 4.
O\times 20-4
Multiply 4 and 5 to get 20.