Solve for N
N=\frac{a^{2}-40a+280}{a^{2}}
a\neq 0
Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{2\left(\sqrt{10\left(7N+3\right)}-10\right)}{N-1}\text{; }a=-\frac{2\sqrt{10}\left(\sqrt{7N+3}+\sqrt{10}\right)}{N-1}\text{, }&N\neq 1\\a=7\text{, }&N=1\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{2\left(\sqrt{10\left(7N+3\right)}-10\right)}{N-1}\text{; }a=-\frac{2\sqrt{10}\left(\sqrt{7N+3}+\sqrt{10}\right)}{N-1}\text{, }&N\neq 1\text{ and }N\geq -\frac{3}{7}\\a=7\text{, }&N=1\end{matrix}\right.
Share
Copied to clipboard
Na^{2}=400-40a+a^{2}-120
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(20-a\right)^{2}.
Na^{2}=280-40a+a^{2}
Subtract 120 from 400 to get 280.
a^{2}N=a^{2}-40a+280
The equation is in standard form.
\frac{a^{2}N}{a^{2}}=\frac{a^{2}-40a+280}{a^{2}}
Divide both sides by a^{2}.
N=\frac{a^{2}-40a+280}{a^{2}}
Dividing by a^{2} undoes the multiplication by a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}