Solve for M
M=\frac{2797}{68d}
d\neq 0
Solve for d
d=\frac{2797}{68M}
M\neq 0
Share
Copied to clipboard
Md=39-\left(-\frac{29}{2}\times \frac{5}{34}\right)
Subtract 93 from \frac{157}{2} to get -\frac{29}{2}.
Md=39-\left(-\frac{145}{68}\right)
Multiply -\frac{29}{2} and \frac{5}{34} to get -\frac{145}{68}.
Md=39+\frac{145}{68}
The opposite of -\frac{145}{68} is \frac{145}{68}.
Md=\frac{2797}{68}
Add 39 and \frac{145}{68} to get \frac{2797}{68}.
dM=\frac{2797}{68}
The equation is in standard form.
\frac{dM}{d}=\frac{\frac{2797}{68}}{d}
Divide both sides by d.
M=\frac{\frac{2797}{68}}{d}
Dividing by d undoes the multiplication by d.
M=\frac{2797}{68d}
Divide \frac{2797}{68} by d.
Md=39-\left(-\frac{29}{2}\times \frac{5}{34}\right)
Subtract 93 from \frac{157}{2} to get -\frac{29}{2}.
Md=39-\left(-\frac{145}{68}\right)
Multiply -\frac{29}{2} and \frac{5}{34} to get -\frac{145}{68}.
Md=39+\frac{145}{68}
The opposite of -\frac{145}{68} is \frac{145}{68}.
Md=\frac{2797}{68}
Add 39 and \frac{145}{68} to get \frac{2797}{68}.
\frac{Md}{M}=\frac{\frac{2797}{68}}{M}
Divide both sides by M.
d=\frac{\frac{2797}{68}}{M}
Dividing by M undoes the multiplication by M.
d=\frac{2797}{68M}
Divide \frac{2797}{68} by M.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}