Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{z-1}{z+1}\times \frac{z^{2}}{z^{2}-1}
Consider \left(z-1\right)\left(z+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{\left(z-1\right)z^{2}}{\left(z+1\right)\left(z^{2}-1\right)}
Multiply \frac{z-1}{z+1} times \frac{z^{2}}{z^{2}-1} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(z-1\right)z^{2}}{\left(z-1\right)\left(z+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{z^{2}}{\left(z+1\right)^{2}}
Cancel out z-1 in both numerator and denominator.
\frac{z^{2}}{z^{2}+2z+1}
Expand the expression.
\frac{z-1}{z+1}\times \frac{z^{2}}{z^{2}-1}
Consider \left(z-1\right)\left(z+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{\left(z-1\right)z^{2}}{\left(z+1\right)\left(z^{2}-1\right)}
Multiply \frac{z-1}{z+1} times \frac{z^{2}}{z^{2}-1} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(z-1\right)z^{2}}{\left(z-1\right)\left(z+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{z^{2}}{\left(z+1\right)^{2}}
Cancel out z-1 in both numerator and denominator.
\frac{z^{2}}{z^{2}+2z+1}
Expand the expression.