Skip to main content
Solve for M
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

M=\left(-b\right)^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(b-b\left(a-3\right)\right)-\frac{ab^{3}-0,75a^{3}b}{ab}
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(-b+\frac{1}{2}a\right)^{2}.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(b-b\left(a-3\right)\right)-\frac{ab^{3}-0,75a^{3}b}{ab}
Calculate -b to the power of 2 and get b^{2}.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(b-\left(ba-3b\right)\right)-\frac{ab^{3}-0,75a^{3}b}{ab}
Use the distributive property to multiply b by a-3.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(b-ba+3b\right)-\frac{ab^{3}-0,75a^{3}b}{ab}
To find the opposite of ba-3b, find the opposite of each term.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(4b-ba\right)-\frac{ab^{3}-0,75a^{3}b}{ab}
Combine b and 3b to get 4b.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-\frac{ab^{3}-0,75a^{3}b}{ab}
To find the opposite of 4b-ba, find the opposite of each term.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-\frac{0,25ab\left(-3a^{2}+4b^{2}\right)}{ab}
Factor the expressions that are not already factored in \frac{ab^{3}-0,75a^{3}b}{ab}.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-0,25\left(-3a^{2}+4b^{2}\right)
Cancel out ab in both numerator and denominator.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-\left(-0,75a^{2}+b^{2}\right)
Expand the expression.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba+0,75a^{2}-b^{2}
To find the opposite of -0,75a^{2}+b^{2}, find the opposite of each term.
M=b^{2}+\left(-b\right)a+a^{2}-4b+ba-b^{2}
Combine \frac{1}{4}a^{2} and 0,75a^{2} to get a^{2}.
M=\left(-b\right)a+a^{2}-4b+ba
Combine b^{2} and -b^{2} to get 0.
M=a^{2}-4b
Combine -ba and ba to get 0.