Solve for L_1
L_{1}=2x\left(y+2\right)
x\neq 0
Solve for x
\left\{\begin{matrix}x=\frac{L_{1}}{2\left(y+2\right)}\text{, }&L_{1}\neq 0\text{ and }y\neq -2\\x\neq 0\text{, }&y=-2\text{ and }L_{1}=0\end{matrix}\right.
Graph
Share
Copied to clipboard
L_{1}-2yx+x\left(-4\right)=0
Multiply both sides of the equation by x.
L_{1}+x\left(-4\right)=2yx
Add 2yx to both sides. Anything plus zero gives itself.
L_{1}=2yx-x\left(-4\right)
Subtract x\left(-4\right) from both sides.
L_{1}=2yx+4x
Multiply -1 and -4 to get 4.
L_{1}-2yx+x\left(-4\right)=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
-2yx+x\left(-4\right)=-L_{1}
Subtract L_{1} from both sides. Anything subtracted from zero gives its negation.
\left(-2y-4\right)x=-L_{1}
Combine all terms containing x.
\frac{\left(-2y-4\right)x}{-2y-4}=-\frac{L_{1}}{-2y-4}
Divide both sides by -2y-4.
x=-\frac{L_{1}}{-2y-4}
Dividing by -2y-4 undoes the multiplication by -2y-4.
x=\frac{L_{1}}{2\left(y+2\right)}
Divide -L_{1} by -2y-4.
x=\frac{L_{1}}{2\left(y+2\right)}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}