Solve for Y
Y=-\frac{6}{8-L}
L\neq 8
Solve for L
L=8+\frac{6}{Y}
Y\neq 0
Share
Copied to clipboard
LY=Y\times 8+6
Variable Y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by Y.
LY-Y\times 8=6
Subtract Y\times 8 from both sides.
LY-8Y=6
Multiply -1 and 8 to get -8.
\left(L-8\right)Y=6
Combine all terms containing Y.
\frac{\left(L-8\right)Y}{L-8}=\frac{6}{L-8}
Divide both sides by L-8.
Y=\frac{6}{L-8}
Dividing by L-8 undoes the multiplication by L-8.
Y=\frac{6}{L-8}\text{, }Y\neq 0
Variable Y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}