Skip to main content
Solve for k (complex solution)
Tick mark Image
Solve for k
Tick mark Image
Solve for L
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3kx+\frac{3}{2}kx^{2}=L
Swap sides so that all variable terms are on the left hand side.
\left(-3x+\frac{3}{2}x^{2}\right)k=L
Combine all terms containing k.
\left(\frac{3x^{2}}{2}-3x\right)k=L
The equation is in standard form.
\frac{\left(\frac{3x^{2}}{2}-3x\right)k}{\frac{3x^{2}}{2}-3x}=\frac{L}{\frac{3x^{2}}{2}-3x}
Divide both sides by -3x+\frac{3}{2}x^{2}.
k=\frac{L}{\frac{3x^{2}}{2}-3x}
Dividing by -3x+\frac{3}{2}x^{2} undoes the multiplication by -3x+\frac{3}{2}x^{2}.
k=\frac{2L}{3x\left(x-2\right)}
Divide L by -3x+\frac{3}{2}x^{2}.
-3kx+\frac{3}{2}kx^{2}=L
Swap sides so that all variable terms are on the left hand side.
\left(-3x+\frac{3}{2}x^{2}\right)k=L
Combine all terms containing k.
\left(\frac{3x^{2}}{2}-3x\right)k=L
The equation is in standard form.
\frac{\left(\frac{3x^{2}}{2}-3x\right)k}{\frac{3x^{2}}{2}-3x}=\frac{L}{\frac{3x^{2}}{2}-3x}
Divide both sides by -3x+\frac{3}{2}x^{2}.
k=\frac{L}{\frac{3x^{2}}{2}-3x}
Dividing by -3x+\frac{3}{2}x^{2} undoes the multiplication by -3x+\frac{3}{2}x^{2}.
k=\frac{2L}{3x\left(x-2\right)}
Divide L by -3x+\frac{3}{2}x^{2}.