Solve for A
A=\frac{\left(\frac{L}{n}\right)^{2}}{\mu }
\mu \neq 0\text{ and }n\neq 0\text{ and }L\neq 0
Solve for L (complex solution)
L=-\sqrt{A}\sqrt{\mu }n
L=\sqrt{A}\sqrt{\mu }n\text{, }A\neq 0\text{ and }\mu \neq 0\text{ and }n\neq 0
Solve for L
L=n\sqrt{A\mu }
L=-n\sqrt{A\mu }\text{, }\left(n\neq 0\text{ and }A<0\text{ and }\mu <0\right)\text{ or }\left(n\neq 0\text{ and }\mu >0\text{ and }A>0\right)
Share
Copied to clipboard
LL=n^{2}\mu A
Multiply both sides of the equation by L.
L^{2}=n^{2}\mu A
Multiply L and L to get L^{2}.
n^{2}\mu A=L^{2}
Swap sides so that all variable terms are on the left hand side.
\mu n^{2}A=L^{2}
The equation is in standard form.
\frac{\mu n^{2}A}{\mu n^{2}}=\frac{L^{2}}{\mu n^{2}}
Divide both sides by n^{2}\mu .
A=\frac{L^{2}}{\mu n^{2}}
Dividing by n^{2}\mu undoes the multiplication by n^{2}\mu .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}