Solve for K
K=\frac{25}{L}
L\neq 0
Solve for L
L=\frac{25}{K}
K\neq 0
Share
Copied to clipboard
6KL=10\times 15
Multiply both sides of the equation by 6.
6KL=150
Multiply 10 and 15 to get 150.
6LK=150
The equation is in standard form.
\frac{6LK}{6L}=\frac{150}{6L}
Divide both sides by 6L.
K=\frac{150}{6L}
Dividing by 6L undoes the multiplication by 6L.
K=\frac{25}{L}
Divide 150 by 6L.
6KL=10\times 15
Multiply both sides of the equation by 6.
6KL=150
Multiply 10 and 15 to get 150.
\frac{6KL}{6K}=\frac{150}{6K}
Divide both sides by 6K.
L=\frac{150}{6K}
Dividing by 6K undoes the multiplication by 6K.
L=\frac{25}{K}
Divide 150 by 6K.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}