Skip to main content
Solve for K
Tick mark Image

Similar Problems from Web Search

Share

K^{2}=\frac{\left(6\times 300-20\times 74\right)^{2}}{4\times 13\times 64\times 187}
Cancel out 2\times 2\times 5\times 20 in both numerator and denominator.
K^{2}=\frac{\left(1800-20\times 74\right)^{2}}{4\times 13\times 64\times 187}
Multiply 6 and 300 to get 1800.
K^{2}=\frac{\left(1800-1480\right)^{2}}{4\times 13\times 64\times 187}
Multiply 20 and 74 to get 1480.
K^{2}=\frac{320^{2}}{4\times 13\times 64\times 187}
Subtract 1480 from 1800 to get 320.
K^{2}=\frac{102400}{4\times 13\times 64\times 187}
Calculate 320 to the power of 2 and get 102400.
K^{2}=\frac{102400}{52\times 64\times 187}
Multiply 4 and 13 to get 52.
K^{2}=\frac{102400}{3328\times 187}
Multiply 52 and 64 to get 3328.
K^{2}=\frac{102400}{622336}
Multiply 3328 and 187 to get 622336.
K^{2}=\frac{400}{2431}
Reduce the fraction \frac{102400}{622336} to lowest terms by extracting and canceling out 256.
K=\frac{20\sqrt{2431}}{2431} K=-\frac{20\sqrt{2431}}{2431}
Take the square root of both sides of the equation.
K^{2}=\frac{\left(6\times 300-20\times 74\right)^{2}}{4\times 13\times 64\times 187}
Cancel out 2\times 2\times 5\times 20 in both numerator and denominator.
K^{2}=\frac{\left(1800-20\times 74\right)^{2}}{4\times 13\times 64\times 187}
Multiply 6 and 300 to get 1800.
K^{2}=\frac{\left(1800-1480\right)^{2}}{4\times 13\times 64\times 187}
Multiply 20 and 74 to get 1480.
K^{2}=\frac{320^{2}}{4\times 13\times 64\times 187}
Subtract 1480 from 1800 to get 320.
K^{2}=\frac{102400}{4\times 13\times 64\times 187}
Calculate 320 to the power of 2 and get 102400.
K^{2}=\frac{102400}{52\times 64\times 187}
Multiply 4 and 13 to get 52.
K^{2}=\frac{102400}{3328\times 187}
Multiply 52 and 64 to get 3328.
K^{2}=\frac{102400}{622336}
Multiply 3328 and 187 to get 622336.
K^{2}=\frac{400}{2431}
Reduce the fraction \frac{102400}{622336} to lowest terms by extracting and canceling out 256.
K^{2}-\frac{400}{2431}=0
Subtract \frac{400}{2431} from both sides.
K=\frac{0±\sqrt{0^{2}-4\left(-\frac{400}{2431}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{400}{2431} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
K=\frac{0±\sqrt{-4\left(-\frac{400}{2431}\right)}}{2}
Square 0.
K=\frac{0±\sqrt{\frac{1600}{2431}}}{2}
Multiply -4 times -\frac{400}{2431}.
K=\frac{0±\frac{40\sqrt{2431}}{2431}}{2}
Take the square root of \frac{1600}{2431}.
K=\frac{20\sqrt{2431}}{2431}
Now solve the equation K=\frac{0±\frac{40\sqrt{2431}}{2431}}{2} when ± is plus.
K=-\frac{20\sqrt{2431}}{2431}
Now solve the equation K=\frac{0±\frac{40\sqrt{2431}}{2431}}{2} when ± is minus.
K=\frac{20\sqrt{2431}}{2431} K=-\frac{20\sqrt{2431}}{2431}
The equation is now solved.