Solve for A
\left\{\begin{matrix}A=\frac{BI}{D}+C\text{, }&D\neq 0\\A\in \mathrm{R}\text{, }&D=0\text{ and }\left(I=0\text{ or }B=0\right)\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=-\frac{D\left(C-A\right)}{I}\text{, }&I\neq 0\\B\in \mathrm{R}\text{, }&\left(C=A\text{ or }D=0\right)\text{ and }I=0\end{matrix}\right.
Share
Copied to clipboard
AD=IB+CD
Swap sides so that all variable terms are on the left hand side.
DA=BI+CD
The equation is in standard form.
\frac{DA}{D}=\frac{BI+CD}{D}
Divide both sides by D.
A=\frac{BI+CD}{D}
Dividing by D undoes the multiplication by D.
A=\frac{BI}{D}+C
Divide IB+CD by D.
IB=AD-CD
Subtract CD from both sides.
\frac{IB}{I}=\frac{D\left(A-C\right)}{I}
Divide both sides by I.
B=\frac{D\left(A-C\right)}{I}
Dividing by I undoes the multiplication by I.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}