Solve for I
I=\frac{60}{5x+2}
x\neq -\frac{2}{5}
Solve for x
x=-\frac{2}{5}+\frac{12}{I}
I\neq 0
Graph
Share
Copied to clipboard
\left(x+\frac{2}{5}\right)I=12
Combine all terms containing I.
\frac{\left(x+\frac{2}{5}\right)I}{x+\frac{2}{5}}=\frac{12}{x+\frac{2}{5}}
Divide both sides by x+\frac{2}{5}.
I=\frac{12}{x+\frac{2}{5}}
Dividing by x+\frac{2}{5} undoes the multiplication by x+\frac{2}{5}.
I=\frac{60}{5x+2}
Divide 12 by x+\frac{2}{5}.
Ix=12-\frac{2}{5}I
Subtract \frac{2}{5}I from both sides.
Ix=-\frac{2I}{5}+12
The equation is in standard form.
\frac{Ix}{I}=\frac{-\frac{2I}{5}+12}{I}
Divide both sides by I.
x=\frac{-\frac{2I}{5}+12}{I}
Dividing by I undoes the multiplication by I.
x=-\frac{2}{5}+\frac{12}{I}
Divide 12-\frac{2I}{5} by I.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}