Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int t^{2}-24t+143\mathrm{d}t
Evaluate the indefinite integral first.
\int t^{2}\mathrm{d}t+\int -24t\mathrm{d}t+\int 143\mathrm{d}t
Integrate the sum term by term.
\int t^{2}\mathrm{d}t-24\int t\mathrm{d}t+\int 143\mathrm{d}t
Factor out the constant in each of the terms.
\frac{t^{3}}{3}-24\int t\mathrm{d}t+\int 143\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}.
\frac{t^{3}}{3}-12t^{2}+\int 143\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply -24 times \frac{t^{2}}{2}.
\frac{t^{3}}{3}-12t^{2}+143t
Find the integral of 143 using the table of common integrals rule \int a\mathrm{d}t=at.
\frac{x^{3}}{3}-12x^{2}+143x-\left(\frac{0^{3}}{3}-12\times 0^{2}+143\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{x\left(x^{2}-36x+429\right)}{3}
Simplify.