Solve for g
\left\{\begin{matrix}g=\frac{I|n|}{m\sqrt{n^{2}+1}}\text{, }&m\neq 0\text{ and }n\neq 0\\g\in \mathrm{R}\text{, }&I=0\text{ and }m=0\text{ and }n\neq 0\end{matrix}\right.
Solve for I
I=\frac{gm\sqrt{n^{2}+1}}{|n|}
n\neq 0
Share
Copied to clipboard
I=mg\sqrt{1+\frac{1^{2}}{n^{2}}}
To raise \frac{1}{n} to a power, raise both numerator and denominator to the power and then divide.
I=mg\sqrt{\frac{n^{2}}{n^{2}}+\frac{1^{2}}{n^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{n^{2}}{n^{2}}.
I=mg\sqrt{\frac{n^{2}+1^{2}}{n^{2}}}
Since \frac{n^{2}}{n^{2}} and \frac{1^{2}}{n^{2}} have the same denominator, add them by adding their numerators.
I=mg\sqrt{\frac{n^{2}+1}{n^{2}}}
Combine like terms in n^{2}+1^{2}.
mg\sqrt{\frac{n^{2}+1}{n^{2}}}=I
Swap sides so that all variable terms are on the left hand side.
\sqrt{\frac{n^{2}+1}{n^{2}}}mg=I
The equation is in standard form.
\frac{\sqrt{\frac{n^{2}+1}{n^{2}}}mg}{\sqrt{\frac{n^{2}+1}{n^{2}}}m}=\frac{I}{\sqrt{\frac{n^{2}+1}{n^{2}}}m}
Divide both sides by m\sqrt{\left(n^{2}+1\right)n^{-2}}.
g=\frac{I}{\sqrt{\frac{n^{2}+1}{n^{2}}}m}
Dividing by m\sqrt{\left(n^{2}+1\right)n^{-2}} undoes the multiplication by m\sqrt{\left(n^{2}+1\right)n^{-2}}.
g=\frac{I|n|}{m\sqrt{n^{2}+1}}
Divide I by m\sqrt{\left(n^{2}+1\right)n^{-2}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}