Solve for t (complex solution)
\left\{\begin{matrix}t=\frac{I}{\rho _{r}}\text{, }&\rho _{r}\neq 0\\t\in \mathrm{C}\text{, }&I=0\text{ and }\rho _{r}=0\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=\frac{I}{\rho _{r}}\text{, }&\rho _{r}\neq 0\\t\in \mathrm{R}\text{, }&I=0\text{ and }\rho _{r}=0\end{matrix}\right.
Solve for I
I=t\rho _{r}
Share
Copied to clipboard
\rho _{r}t=I
Swap sides so that all variable terms are on the left hand side.
\frac{\rho _{r}t}{\rho _{r}}=\frac{I}{\rho _{r}}
Divide both sides by \rho _{r}.
t=\frac{I}{\rho _{r}}
Dividing by \rho _{r} undoes the multiplication by \rho _{r}.
\rho _{r}t=I
Swap sides so that all variable terms are on the left hand side.
\frac{\rho _{r}t}{\rho _{r}}=\frac{I}{\rho _{r}}
Divide both sides by \rho _{r}.
t=\frac{I}{\rho _{r}}
Dividing by \rho _{r} undoes the multiplication by \rho _{r}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}