Skip to main content
Solve for I
Tick mark Image
Assign I
Tick mark Image

Similar Problems from Web Search

Share

I=\frac{4500}{33}\left(\frac{2\times 9.8\times 0.98}{9.5^{2}}-\left(10.5\times 10^{-3}\right)^{2}\right)
Multiply 18 and 250 to get 4500.
I=\frac{1500}{11}\left(\frac{2\times 9.8\times 0.98}{9.5^{2}}-\left(10.5\times 10^{-3}\right)^{2}\right)
Reduce the fraction \frac{4500}{33} to lowest terms by extracting and canceling out 3.
I=\frac{1500}{11}\left(\frac{19.6\times 0.98}{9.5^{2}}-\left(10.5\times 10^{-3}\right)^{2}\right)
Multiply 2 and 9.8 to get 19.6.
I=\frac{1500}{11}\left(\frac{19.208}{9.5^{2}}-\left(10.5\times 10^{-3}\right)^{2}\right)
Multiply 19.6 and 0.98 to get 19.208.
I=\frac{1500}{11}\left(\frac{19.208}{90.25}-\left(10.5\times 10^{-3}\right)^{2}\right)
Calculate 9.5 to the power of 2 and get 90.25.
I=\frac{1500}{11}\left(\frac{19208}{90250}-\left(10.5\times 10^{-3}\right)^{2}\right)
Expand \frac{19.208}{90.25} by multiplying both numerator and the denominator by 1000.
I=\frac{1500}{11}\left(\frac{9604}{45125}-\left(10.5\times 10^{-3}\right)^{2}\right)
Reduce the fraction \frac{19208}{90250} to lowest terms by extracting and canceling out 2.
I=\frac{1500}{11}\left(\frac{9604}{45125}-\left(10.5\times \frac{1}{1000}\right)^{2}\right)
Calculate 10 to the power of -3 and get \frac{1}{1000}.
I=\frac{1500}{11}\left(\frac{9604}{45125}-\left(\frac{21}{2000}\right)^{2}\right)
Multiply 10.5 and \frac{1}{1000} to get \frac{21}{2000}.
I=\frac{1500}{11}\left(\frac{9604}{45125}-\frac{441}{4000000}\right)
Calculate \frac{21}{2000} to the power of 2 and get \frac{441}{4000000}.
I=\frac{1500}{11}\times \frac{307168799}{1444000000}
Subtract \frac{441}{4000000} from \frac{9604}{45125} to get \frac{307168799}{1444000000}.
I=\frac{921506397}{31768000}
Multiply \frac{1500}{11} and \frac{307168799}{1444000000} to get \frac{921506397}{31768000}.