Solve for I
I=9
Assign I
I≔9
Share
Copied to clipboard
I=\frac{10}{\frac{9}{9}+\frac{1}{9}}
Convert 1 to fraction \frac{9}{9}.
I=\frac{10}{\frac{9+1}{9}}
Since \frac{9}{9} and \frac{1}{9} have the same denominator, add them by adding their numerators.
I=\frac{10}{\frac{10}{9}}
Add 9 and 1 to get 10.
I=10\times \frac{9}{10}
Divide 10 by \frac{10}{9} by multiplying 10 by the reciprocal of \frac{10}{9}.
I=9
Cancel out 10 and 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}