Solve for H
H = -\frac{20}{3} = -6\frac{2}{3} \approx -6.666666667
Assign H
H≔-\frac{20}{3}
Share
Copied to clipboard
H=-3\times \frac{9}{4}+\frac{-\frac{1}{2}}{-6}
Divide -3 by \frac{4}{9} by multiplying -3 by the reciprocal of \frac{4}{9}.
H=\frac{-3\times 9}{4}+\frac{-\frac{1}{2}}{-6}
Express -3\times \frac{9}{4} as a single fraction.
H=\frac{-27}{4}+\frac{-\frac{1}{2}}{-6}
Multiply -3 and 9 to get -27.
H=-\frac{27}{4}+\frac{-\frac{1}{2}}{-6}
Fraction \frac{-27}{4} can be rewritten as -\frac{27}{4} by extracting the negative sign.
H=-\frac{27}{4}+\frac{-1}{2\left(-6\right)}
Express \frac{-\frac{1}{2}}{-6} as a single fraction.
H=-\frac{27}{4}+\frac{-1}{-12}
Multiply 2 and -6 to get -12.
H=-\frac{27}{4}+\frac{1}{12}
Fraction \frac{-1}{-12} can be simplified to \frac{1}{12} by removing the negative sign from both the numerator and the denominator.
H=-\frac{81}{12}+\frac{1}{12}
Least common multiple of 4 and 12 is 12. Convert -\frac{27}{4} and \frac{1}{12} to fractions with denominator 12.
H=\frac{-81+1}{12}
Since -\frac{81}{12} and \frac{1}{12} have the same denominator, add them by adding their numerators.
H=\frac{-80}{12}
Add -81 and 1 to get -80.
H=-\frac{20}{3}
Reduce the fraction \frac{-80}{12} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}