Evaluate
\frac{24274110000000000000G_{6}}{29929}
Differentiate w.r.t. G_6
\frac{24274110000000000000}{29929} = 811056500384242\frac{21182}{29929} = 811056500384242.8
Share
Copied to clipboard
G_{6}\times 0.674\times \frac{1}{100000000000}\times \frac{70^{2}\times 7.35\times 10^{22}}{1.73^{2}}
Calculate 10 to the power of -11 and get \frac{1}{100000000000}.
G_{6}\times \frac{337}{50000000000000}\times \frac{70^{2}\times 7.35\times 10^{22}}{1.73^{2}}
Multiply 0.674 and \frac{1}{100000000000} to get \frac{337}{50000000000000}.
G_{6}\times \frac{337}{50000000000000}\times \frac{4900\times 7.35\times 10^{22}}{1.73^{2}}
Calculate 70 to the power of 2 and get 4900.
G_{6}\times \frac{337}{50000000000000}\times \frac{36015\times 10^{22}}{1.73^{2}}
Multiply 4900 and 7.35 to get 36015.
G_{6}\times \frac{337}{50000000000000}\times \frac{36015\times 10000000000000000000000}{1.73^{2}}
Calculate 10 to the power of 22 and get 10000000000000000000000.
G_{6}\times \frac{337}{50000000000000}\times \frac{360150000000000000000000000}{1.73^{2}}
Multiply 36015 and 10000000000000000000000 to get 360150000000000000000000000.
G_{6}\times \frac{337}{50000000000000}\times \frac{360150000000000000000000000}{2.9929}
Calculate 1.73 to the power of 2 and get 2.9929.
G_{6}\times \frac{337}{50000000000000}\times \frac{3601500000000000000000000000000}{29929}
Expand \frac{360150000000000000000000000}{2.9929} by multiplying both numerator and the denominator by 10000.
G_{6}\times \frac{24274110000000000000}{29929}
Multiply \frac{337}{50000000000000} and \frac{3601500000000000000000000000000}{29929} to get \frac{24274110000000000000}{29929}.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times 0.674\times \frac{1}{100000000000}\times \frac{70^{2}\times 7.35\times 10^{22}}{1.73^{2}})
Calculate 10 to the power of -11 and get \frac{1}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times \frac{337}{50000000000000}\times \frac{70^{2}\times 7.35\times 10^{22}}{1.73^{2}})
Multiply 0.674 and \frac{1}{100000000000} to get \frac{337}{50000000000000}.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times \frac{337}{50000000000000}\times \frac{4900\times 7.35\times 10^{22}}{1.73^{2}})
Calculate 70 to the power of 2 and get 4900.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times \frac{337}{50000000000000}\times \frac{36015\times 10^{22}}{1.73^{2}})
Multiply 4900 and 7.35 to get 36015.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times \frac{337}{50000000000000}\times \frac{36015\times 10000000000000000000000}{1.73^{2}})
Calculate 10 to the power of 22 and get 10000000000000000000000.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times \frac{337}{50000000000000}\times \frac{360150000000000000000000000}{1.73^{2}})
Multiply 36015 and 10000000000000000000000 to get 360150000000000000000000000.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times \frac{337}{50000000000000}\times \frac{360150000000000000000000000}{2.9929})
Calculate 1.73 to the power of 2 and get 2.9929.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times \frac{337}{50000000000000}\times \frac{3601500000000000000000000000000}{29929})
Expand \frac{360150000000000000000000000}{2.9929} by multiplying both numerator and the denominator by 10000.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times \frac{24274110000000000000}{29929})
Multiply \frac{337}{50000000000000} and \frac{3601500000000000000000000000000}{29929} to get \frac{24274110000000000000}{29929}.
\frac{24274110000000000000}{29929}G_{6}^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{24274110000000000000}{29929}G_{6}^{0}
Subtract 1 from 1.
\frac{24274110000000000000}{29929}\times 1
For any term t except 0, t^{0}=1.
\frac{24274110000000000000}{29929}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}