Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. G_6
Tick mark Image

Similar Problems from Web Search

Share

G_{6}\times 0.674\times \frac{1}{100000000000}\times \frac{70^{2}\times 7.35\times 10^{22}}{1.73^{2}}
Calculate 10 to the power of -11 and get \frac{1}{100000000000}.
G_{6}\times \frac{337}{50000000000000}\times \frac{70^{2}\times 7.35\times 10^{22}}{1.73^{2}}
Multiply 0.674 and \frac{1}{100000000000} to get \frac{337}{50000000000000}.
G_{6}\times \frac{337}{50000000000000}\times \frac{4900\times 7.35\times 10^{22}}{1.73^{2}}
Calculate 70 to the power of 2 and get 4900.
G_{6}\times \frac{337}{50000000000000}\times \frac{36015\times 10^{22}}{1.73^{2}}
Multiply 4900 and 7.35 to get 36015.
G_{6}\times \frac{337}{50000000000000}\times \frac{36015\times 10000000000000000000000}{1.73^{2}}
Calculate 10 to the power of 22 and get 10000000000000000000000.
G_{6}\times \frac{337}{50000000000000}\times \frac{360150000000000000000000000}{1.73^{2}}
Multiply 36015 and 10000000000000000000000 to get 360150000000000000000000000.
G_{6}\times \frac{337}{50000000000000}\times \frac{360150000000000000000000000}{2.9929}
Calculate 1.73 to the power of 2 and get 2.9929.
G_{6}\times \frac{337}{50000000000000}\times \frac{3601500000000000000000000000000}{29929}
Expand \frac{360150000000000000000000000}{2.9929} by multiplying both numerator and the denominator by 10000.
G_{6}\times \frac{24274110000000000000}{29929}
Multiply \frac{337}{50000000000000} and \frac{3601500000000000000000000000000}{29929} to get \frac{24274110000000000000}{29929}.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times 0.674\times \frac{1}{100000000000}\times \frac{70^{2}\times 7.35\times 10^{22}}{1.73^{2}})
Calculate 10 to the power of -11 and get \frac{1}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times \frac{337}{50000000000000}\times \frac{70^{2}\times 7.35\times 10^{22}}{1.73^{2}})
Multiply 0.674 and \frac{1}{100000000000} to get \frac{337}{50000000000000}.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times \frac{337}{50000000000000}\times \frac{4900\times 7.35\times 10^{22}}{1.73^{2}})
Calculate 70 to the power of 2 and get 4900.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times \frac{337}{50000000000000}\times \frac{36015\times 10^{22}}{1.73^{2}})
Multiply 4900 and 7.35 to get 36015.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times \frac{337}{50000000000000}\times \frac{36015\times 10000000000000000000000}{1.73^{2}})
Calculate 10 to the power of 22 and get 10000000000000000000000.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times \frac{337}{50000000000000}\times \frac{360150000000000000000000000}{1.73^{2}})
Multiply 36015 and 10000000000000000000000 to get 360150000000000000000000000.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times \frac{337}{50000000000000}\times \frac{360150000000000000000000000}{2.9929})
Calculate 1.73 to the power of 2 and get 2.9929.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times \frac{337}{50000000000000}\times \frac{3601500000000000000000000000000}{29929})
Expand \frac{360150000000000000000000000}{2.9929} by multiplying both numerator and the denominator by 10000.
\frac{\mathrm{d}}{\mathrm{d}G_{6}}(G_{6}\times \frac{24274110000000000000}{29929})
Multiply \frac{337}{50000000000000} and \frac{3601500000000000000000000000000}{29929} to get \frac{24274110000000000000}{29929}.
\frac{24274110000000000000}{29929}G_{6}^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{24274110000000000000}{29929}G_{6}^{0}
Subtract 1 from 1.
\frac{24274110000000000000}{29929}\times 1
For any term t except 0, t^{0}=1.
\frac{24274110000000000000}{29929}
For any term t, t\times 1=t and 1t=t.