Factor
2\left(30-x\right)\left(3x+5\right)
Evaluate
300+170x-6x^{2}
Graph
Share
Copied to clipboard
2\left(-3x^{2}+85x+150\right)
Factor out 2.
a+b=85 ab=-3\times 150=-450
Consider -3x^{2}+85x+150. Factor the expression by grouping. First, the expression needs to be rewritten as -3x^{2}+ax+bx+150. To find a and b, set up a system to be solved.
-1,450 -2,225 -3,150 -5,90 -6,75 -9,50 -10,45 -15,30 -18,25
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -450.
-1+450=449 -2+225=223 -3+150=147 -5+90=85 -6+75=69 -9+50=41 -10+45=35 -15+30=15 -18+25=7
Calculate the sum for each pair.
a=90 b=-5
The solution is the pair that gives sum 85.
\left(-3x^{2}+90x\right)+\left(-5x+150\right)
Rewrite -3x^{2}+85x+150 as \left(-3x^{2}+90x\right)+\left(-5x+150\right).
3x\left(-x+30\right)+5\left(-x+30\right)
Factor out 3x in the first and 5 in the second group.
\left(-x+30\right)\left(3x+5\right)
Factor out common term -x+30 by using distributive property.
2\left(-x+30\right)\left(3x+5\right)
Rewrite the complete factored expression.
-6x^{2}+170x+300=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-170±\sqrt{170^{2}-4\left(-6\right)\times 300}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-170±\sqrt{28900-4\left(-6\right)\times 300}}{2\left(-6\right)}
Square 170.
x=\frac{-170±\sqrt{28900+24\times 300}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-170±\sqrt{28900+7200}}{2\left(-6\right)}
Multiply 24 times 300.
x=\frac{-170±\sqrt{36100}}{2\left(-6\right)}
Add 28900 to 7200.
x=\frac{-170±190}{2\left(-6\right)}
Take the square root of 36100.
x=\frac{-170±190}{-12}
Multiply 2 times -6.
x=\frac{20}{-12}
Now solve the equation x=\frac{-170±190}{-12} when ± is plus. Add -170 to 190.
x=-\frac{5}{3}
Reduce the fraction \frac{20}{-12} to lowest terms by extracting and canceling out 4.
x=-\frac{360}{-12}
Now solve the equation x=\frac{-170±190}{-12} when ± is minus. Subtract 190 from -170.
x=30
Divide -360 by -12.
-6x^{2}+170x+300=-6\left(x-\left(-\frac{5}{3}\right)\right)\left(x-30\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{5}{3} for x_{1} and 30 for x_{2}.
-6x^{2}+170x+300=-6\left(x+\frac{5}{3}\right)\left(x-30\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-6x^{2}+170x+300=-6\times \frac{-3x-5}{-3}\left(x-30\right)
Add \frac{5}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-6x^{2}+170x+300=2\left(-3x-5\right)\left(x-30\right)
Cancel out 3, the greatest common factor in -6 and 3.
x ^ 2 -\frac{85}{3}x -50 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{85}{3} rs = -50
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{85}{6} - u s = \frac{85}{6} + u
Two numbers r and s sum up to \frac{85}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{85}{3} = \frac{85}{6}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{85}{6} - u) (\frac{85}{6} + u) = -50
To solve for unknown quantity u, substitute these in the product equation rs = -50
\frac{7225}{36} - u^2 = -50
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -50-\frac{7225}{36} = -\frac{9025}{36}
Simplify the expression by subtracting \frac{7225}{36} on both sides
u^2 = \frac{9025}{36} u = \pm\sqrt{\frac{9025}{36}} = \pm \frac{95}{6}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{85}{6} - \frac{95}{6} = -1.667 s = \frac{85}{6} + \frac{95}{6} = 30
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}