Solve for A
A=\frac{FM-GPD^{3}-5}{3PD^{3}}
P\neq 0\text{ and }D\neq 0
Solve for D
\left\{\begin{matrix}D=\sqrt[3]{\frac{FM-5}{P\left(3A+G\right)}}\text{, }&\left(M\neq \frac{5}{F}\text{ or }F=0\right)\text{ and }G\neq -3A\text{ and }P\neq 0\\D\neq 0\text{, }&G=-3A\text{ and }M=\frac{5}{F}\text{ and }F\neq 0\text{ and }P\neq 0\end{matrix}\right.
Share
Copied to clipboard
GPD^{3}=MF-5-3APD^{3}
Multiply both sides of the equation by PD^{3}.
MF-5-3APD^{3}=GPD^{3}
Swap sides so that all variable terms are on the left hand side.
-5-3APD^{3}=GPD^{3}-MF
Subtract MF from both sides.
-3APD^{3}=GPD^{3}-MF+5
Add 5 to both sides.
\left(-3PD^{3}\right)A=5+GPD^{3}-FM
The equation is in standard form.
\frac{\left(-3PD^{3}\right)A}{-3PD^{3}}=\frac{5+GPD^{3}-FM}{-3PD^{3}}
Divide both sides by -3PD^{3}.
A=\frac{5+GPD^{3}-FM}{-3PD^{3}}
Dividing by -3PD^{3} undoes the multiplication by -3PD^{3}.
A=-\frac{5+GPD^{3}-FM}{3PD^{3}}
Divide GD^{3}P-MF+5 by -3PD^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}