Solve for F
F=-\frac{2\sqrt{2}-3}{k}
k\neq 0
Solve for k
k=-\frac{2\sqrt{2}-3}{F}
F\neq 0
Share
Copied to clipboard
kF=-\left(\sqrt{2}\right)^{3}+3
The equation is in standard form.
\frac{kF}{k}=\frac{3-2\sqrt{2}}{k}
Divide both sides by k.
F=\frac{3-2\sqrt{2}}{k}
Dividing by k undoes the multiplication by k.
Fk=-\left(\sqrt{2}\right)^{3}+3
The equation is in standard form.
\frac{Fk}{F}=\frac{3-2\sqrt{2}}{F}
Divide both sides by F.
k=\frac{3-2\sqrt{2}}{F}
Dividing by F undoes the multiplication by F.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}