Evaluate
-\frac{x}{x^{2}-1}
Expand
-\frac{x}{x^{2}-1}
Graph
Share
Copied to clipboard
\frac{x\left(x-1\right)}{x-1}-\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{\frac{4}{x^{2}}}
Factor the expressions that are not already factored in \frac{x^{2}-x}{x-1}.
x-\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{\frac{4}{x^{2}}}
Cancel out x-1 in both numerator and denominator.
x-\frac{\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{4}{x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+1 is \left(x-1\right)\left(x+1\right). Multiply \frac{x+1}{x-1} times \frac{x+1}{x+1}. Multiply \frac{x-1}{x+1} times \frac{x-1}{x-1}.
x-\frac{\frac{\left(x+1\right)\left(x+1\right)-\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{4}{x^{2}}}
Since \frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
x-\frac{\frac{x^{2}+x+x+1-x^{2}+x+x-1}{\left(x-1\right)\left(x+1\right)}}{\frac{4}{x^{2}}}
Do the multiplications in \left(x+1\right)\left(x+1\right)-\left(x-1\right)\left(x-1\right).
x-\frac{\frac{4x}{\left(x-1\right)\left(x+1\right)}}{\frac{4}{x^{2}}}
Combine like terms in x^{2}+x+x+1-x^{2}+x+x-1.
x-\frac{4xx^{2}}{\left(x-1\right)\left(x+1\right)\times 4}
Divide \frac{4x}{\left(x-1\right)\left(x+1\right)} by \frac{4}{x^{2}} by multiplying \frac{4x}{\left(x-1\right)\left(x+1\right)} by the reciprocal of \frac{4}{x^{2}}.
x-\frac{xx^{2}}{\left(x-1\right)\left(x+1\right)}
Cancel out 4 in both numerator and denominator.
x-\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{x\left(x-1\right)\left(x+1\right)-x^{3}}{\left(x-1\right)\left(x+1\right)}
Since \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{x^{3}}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}+x^{2}-x^{2}-x-x^{3}}{\left(x-1\right)\left(x+1\right)}
Do the multiplications in x\left(x-1\right)\left(x+1\right)-x^{3}.
\frac{-x}{\left(x-1\right)\left(x+1\right)}
Combine like terms in x^{3}+x^{2}-x^{2}-x-x^{3}.
\frac{-x}{x^{2}-1}
Expand \left(x-1\right)\left(x+1\right).
\frac{x\left(x-1\right)}{x-1}-\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{\frac{4}{x^{2}}}
Factor the expressions that are not already factored in \frac{x^{2}-x}{x-1}.
x-\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{\frac{4}{x^{2}}}
Cancel out x-1 in both numerator and denominator.
x-\frac{\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{4}{x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+1 is \left(x-1\right)\left(x+1\right). Multiply \frac{x+1}{x-1} times \frac{x+1}{x+1}. Multiply \frac{x-1}{x+1} times \frac{x-1}{x-1}.
x-\frac{\frac{\left(x+1\right)\left(x+1\right)-\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}}{\frac{4}{x^{2}}}
Since \frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
x-\frac{\frac{x^{2}+x+x+1-x^{2}+x+x-1}{\left(x-1\right)\left(x+1\right)}}{\frac{4}{x^{2}}}
Do the multiplications in \left(x+1\right)\left(x+1\right)-\left(x-1\right)\left(x-1\right).
x-\frac{\frac{4x}{\left(x-1\right)\left(x+1\right)}}{\frac{4}{x^{2}}}
Combine like terms in x^{2}+x+x+1-x^{2}+x+x-1.
x-\frac{4xx^{2}}{\left(x-1\right)\left(x+1\right)\times 4}
Divide \frac{4x}{\left(x-1\right)\left(x+1\right)} by \frac{4}{x^{2}} by multiplying \frac{4x}{\left(x-1\right)\left(x+1\right)} by the reciprocal of \frac{4}{x^{2}}.
x-\frac{xx^{2}}{\left(x-1\right)\left(x+1\right)}
Cancel out 4 in both numerator and denominator.
x-\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{x\left(x-1\right)\left(x+1\right)-x^{3}}{\left(x-1\right)\left(x+1\right)}
Since \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} and \frac{x^{3}}{\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}+x^{2}-x^{2}-x-x^{3}}{\left(x-1\right)\left(x+1\right)}
Do the multiplications in x\left(x-1\right)\left(x+1\right)-x^{3}.
\frac{-x}{\left(x-1\right)\left(x+1\right)}
Combine like terms in x^{3}+x^{2}-x^{2}-x-x^{3}.
\frac{-x}{x^{2}-1}
Expand \left(x-1\right)\left(x+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}