Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for F
Tick mark Image
Graph

Similar Problems from Web Search

Share

F=x+3y+7.5\lambda -\lambda xy
Use the distributive property to multiply \lambda by 7.5-xy.
x+3y+7.5\lambda -\lambda xy=F
Swap sides so that all variable terms are on the left hand side.
x+7.5\lambda -\lambda xy=F-3y
Subtract 3y from both sides.
x-\lambda xy=F-3y-7.5\lambda
Subtract 7.5\lambda from both sides.
\left(1-\lambda y\right)x=F-3y-7.5\lambda
Combine all terms containing x.
\left(1-y\lambda \right)x=-\frac{15\lambda }{2}+F-3y
The equation is in standard form.
\frac{\left(1-y\lambda \right)x}{1-y\lambda }=\frac{-\frac{15\lambda }{2}+F-3y}{1-y\lambda }
Divide both sides by 1-\lambda y.
x=\frac{-\frac{15\lambda }{2}+F-3y}{1-y\lambda }
Dividing by 1-\lambda y undoes the multiplication by 1-\lambda y.
x=\frac{-6y+2F-15\lambda }{2\left(1-y\lambda \right)}
Divide F-3y-\frac{15\lambda }{2} by 1-\lambda y.
F=x+3y+7.5\lambda -\lambda xy
Use the distributive property to multiply \lambda by 7.5-xy.
x+3y+7.5\lambda -\lambda xy=F
Swap sides so that all variable terms are on the left hand side.
x+7.5\lambda -\lambda xy=F-3y
Subtract 3y from both sides.
x-\lambda xy=F-3y-7.5\lambda
Subtract 7.5\lambda from both sides.
\left(1-\lambda y\right)x=F-3y-7.5\lambda
Combine all terms containing x.
\left(1-y\lambda \right)x=-\frac{15\lambda }{2}+F-3y
The equation is in standard form.
\frac{\left(1-y\lambda \right)x}{1-y\lambda }=\frac{-\frac{15\lambda }{2}+F-3y}{1-y\lambda }
Divide both sides by 1-\lambda y.
x=\frac{-\frac{15\lambda }{2}+F-3y}{1-y\lambda }
Dividing by 1-\lambda y undoes the multiplication by 1-\lambda y.
x=\frac{-6y+2F-15\lambda }{2\left(1-y\lambda \right)}
Divide F-3y-\frac{15\lambda }{2} by 1-\lambda y.