Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{6y+15\lambda -2F}{2\left(1-y\lambda \right)}\text{, }&\lambda =0\text{ or }y\neq \frac{1}{\lambda }\\x\in \mathrm{C}\text{, }&F=\frac{15\lambda }{2}+\frac{3}{\lambda }\text{ and }y=\frac{1}{\lambda }\text{ and }\lambda \neq 0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{6y+15\lambda -2F}{2\left(1-y\lambda \right)}\text{, }&\lambda =0\text{ or }y\neq \frac{1}{\lambda }\\x\in \mathrm{R}\text{, }&F=\frac{15\lambda }{2}+\frac{3}{\lambda }\text{ and }y=\frac{1}{\lambda }\text{ and }\lambda \neq 0\end{matrix}\right.
Solve for F
F=-xy\lambda +\frac{15\lambda }{2}+x+3y
Graph
Share
Copied to clipboard
F=x+3y+7.5\lambda -\lambda xy
Use the distributive property to multiply \lambda by 7.5-xy.
x+3y+7.5\lambda -\lambda xy=F
Swap sides so that all variable terms are on the left hand side.
x+7.5\lambda -\lambda xy=F-3y
Subtract 3y from both sides.
x-\lambda xy=F-3y-7.5\lambda
Subtract 7.5\lambda from both sides.
\left(1-\lambda y\right)x=F-3y-7.5\lambda
Combine all terms containing x.
\left(1-y\lambda \right)x=-\frac{15\lambda }{2}+F-3y
The equation is in standard form.
\frac{\left(1-y\lambda \right)x}{1-y\lambda }=\frac{-\frac{15\lambda }{2}+F-3y}{1-y\lambda }
Divide both sides by 1-\lambda y.
x=\frac{-\frac{15\lambda }{2}+F-3y}{1-y\lambda }
Dividing by 1-\lambda y undoes the multiplication by 1-\lambda y.
x=\frac{-6y+2F-15\lambda }{2\left(1-y\lambda \right)}
Divide F-3y-\frac{15\lambda }{2} by 1-\lambda y.
F=x+3y+7.5\lambda -\lambda xy
Use the distributive property to multiply \lambda by 7.5-xy.
x+3y+7.5\lambda -\lambda xy=F
Swap sides so that all variable terms are on the left hand side.
x+7.5\lambda -\lambda xy=F-3y
Subtract 3y from both sides.
x-\lambda xy=F-3y-7.5\lambda
Subtract 7.5\lambda from both sides.
\left(1-\lambda y\right)x=F-3y-7.5\lambda
Combine all terms containing x.
\left(1-y\lambda \right)x=-\frac{15\lambda }{2}+F-3y
The equation is in standard form.
\frac{\left(1-y\lambda \right)x}{1-y\lambda }=\frac{-\frac{15\lambda }{2}+F-3y}{1-y\lambda }
Divide both sides by 1-\lambda y.
x=\frac{-\frac{15\lambda }{2}+F-3y}{1-y\lambda }
Dividing by 1-\lambda y undoes the multiplication by 1-\lambda y.
x=\frac{-6y+2F-15\lambda }{2\left(1-y\lambda \right)}
Divide F-3y-\frac{15\lambda }{2} by 1-\lambda y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}