Solve for a
\left\{\begin{matrix}a=-\frac{s\left(32-F\right)}{c}\text{, }&s\neq 0\text{ and }c\neq 0\\a\in \mathrm{R}\text{, }&F=32\text{ and }c=0\text{ and }s\neq 0\end{matrix}\right.
Solve for F
F=\frac{ac}{s}+32
s\neq 0
Share
Copied to clipboard
Fs=ac+s\times 32
Multiply both sides of the equation by s.
ac+s\times 32=Fs
Swap sides so that all variable terms are on the left hand side.
ac=Fs-s\times 32
Subtract s\times 32 from both sides.
ac=Fs-32s
Multiply -1 and 32 to get -32.
ca=Fs-32s
The equation is in standard form.
\frac{ca}{c}=\frac{s\left(F-32\right)}{c}
Divide both sides by c.
a=\frac{s\left(F-32\right)}{c}
Dividing by c undoes the multiplication by c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}