Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+1}{3x-6}-\frac{\frac{2}{x-2}+\frac{1}{\left(x-2\right)\left(-x-2\right)}}{\frac{2x^{2}+3x}{x^{2}+2x}}
Factor 4-x^{2}.
\frac{x+1}{3x-6}-\frac{\frac{2\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}+\frac{1}{\left(x-2\right)\left(-x-2\right)}}{\frac{2x^{2}+3x}{x^{2}+2x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and \left(x-2\right)\left(-x-2\right) is \left(x-2\right)\left(-x-2\right). Multiply \frac{2}{x-2} times \frac{-x-2}{-x-2}.
\frac{x+1}{3x-6}-\frac{\frac{2\left(-x-2\right)+1}{\left(x-2\right)\left(-x-2\right)}}{\frac{2x^{2}+3x}{x^{2}+2x}}
Since \frac{2\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} and \frac{1}{\left(x-2\right)\left(-x-2\right)} have the same denominator, add them by adding their numerators.
\frac{x+1}{3x-6}-\frac{\frac{-2x-4+1}{\left(x-2\right)\left(-x-2\right)}}{\frac{2x^{2}+3x}{x^{2}+2x}}
Do the multiplications in 2\left(-x-2\right)+1.
\frac{x+1}{3x-6}-\frac{\frac{-2x-3}{\left(x-2\right)\left(-x-2\right)}}{\frac{2x^{2}+3x}{x^{2}+2x}}
Combine like terms in -2x-4+1.
\frac{x+1}{3x-6}-\frac{\frac{-2x-3}{\left(x-2\right)\left(-x-2\right)}}{\frac{x\left(2x+3\right)}{x\left(x+2\right)}}
Factor the expressions that are not already factored in \frac{2x^{2}+3x}{x^{2}+2x}.
\frac{x+1}{3x-6}-\frac{\frac{-2x-3}{\left(x-2\right)\left(-x-2\right)}}{\frac{2x+3}{x+2}}
Cancel out x in both numerator and denominator.
\frac{x+1}{3x-6}-\frac{\left(-2x-3\right)\left(x+2\right)}{\left(x-2\right)\left(-x-2\right)\left(2x+3\right)}
Divide \frac{-2x-3}{\left(x-2\right)\left(-x-2\right)} by \frac{2x+3}{x+2} by multiplying \frac{-2x-3}{\left(x-2\right)\left(-x-2\right)} by the reciprocal of \frac{2x+3}{x+2}.
\frac{x+1}{3x-6}-\frac{-\left(-1\right)\left(-x-2\right)\left(2x+3\right)}{\left(x-2\right)\left(-x-2\right)\left(2x+3\right)}
Extract the negative sign in -2x-3. Extract the negative sign in x+2.
\frac{x+1}{3x-6}-\frac{-\left(-1\right)}{x-2}
Cancel out \left(-x-2\right)\left(2x+3\right) in both numerator and denominator.
\frac{x+1}{3x-6}-\frac{1}{x-2}
Multiply -1 and -1 to get 1.
\frac{x+1}{3\left(x-2\right)}-\frac{1}{x-2}
Factor 3x-6.
\frac{x+1}{3\left(x-2\right)}-\frac{3}{3\left(x-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x-2\right) and x-2 is 3\left(x-2\right). Multiply \frac{1}{x-2} times \frac{3}{3}.
\frac{x+1-3}{3\left(x-2\right)}
Since \frac{x+1}{3\left(x-2\right)} and \frac{3}{3\left(x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x-2}{3\left(x-2\right)}
Combine like terms in x+1-3.
\frac{1}{3}
Cancel out x-2 in both numerator and denominator.