Solve for E
E=\frac{139027150575004409}{140000000000000000}\approx 0.993051076
Assign E
E≔\frac{139027150575004409}{140000000000000000}
Share
Copied to clipboard
E = 3 \cdot 0.14054083470239145 + \frac{4}{7}
Evaluate trigonometric functions in the problem
E=0.42162250410717435+\frac{4}{7}
Multiply 3 and 0.14054083470239145 to get 0.42162250410717435.
E=\frac{8432450082143487}{20000000000000000}+\frac{4}{7}
Convert decimal number 0.42162250410717435 to fraction \frac{8432450082143487}{10000000000}. Reduce the fraction \frac{8432450082143487}{10000000000} to lowest terms by extracting and canceling out 1.
E=\frac{59027150575004409}{140000000000000000}+\frac{80000000000000000}{140000000000000000}
Least common multiple of 20000000000000000 and 7 is 140000000000000000. Convert \frac{8432450082143487}{20000000000000000} and \frac{4}{7} to fractions with denominator 140000000000000000.
E=\frac{59027150575004409+80000000000000000}{140000000000000000}
Since \frac{59027150575004409}{140000000000000000} and \frac{80000000000000000}{140000000000000000} have the same denominator, add them by adding their numerators.
E=\frac{139027150575004409}{140000000000000000}
Add 59027150575004409 and 80000000000000000 to get 139027150575004409.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}