E = \text { (Multiplos de } 3
Solve for M
\left\{\begin{matrix}M=-\frac{iE}{3edopstul^{2}}\text{, }&d\neq 0\text{ and }s\neq 0\text{ and }o\neq 0\text{ and }p\neq 0\text{ and }t\neq 0\text{ and }u\neq 0\text{ and }l\neq 0\\M\in \mathrm{C}\text{, }&\left(l=0\text{ or }u=0\text{ or }t=0\text{ or }p=0\text{ or }o=0\text{ or }s=0\text{ or }d=0\right)\text{ and }E=0\end{matrix}\right.
Solve for E
E=3eiMdopstul^{2}
Share
Copied to clipboard
E=Mul^{2}tiposde\times 3
Multiply l and l to get l^{2}.
E=Mul^{2}t\times \left(3i\right)posde
Multiply i and 3 to get 3i.
Mul^{2}t\times \left(3i\right)posde=E
Swap sides so that all variable terms are on the left hand side.
3eiMdopstul^{2}=E
Reorder the terms.
3eidopstul^{2}M=E
The equation is in standard form.
\frac{3eidopstul^{2}M}{3eidopstul^{2}}=\frac{E}{3eidopstul^{2}}
Divide both sides by 3il^{2}edopstu.
M=\frac{E}{3eidopstul^{2}}
Dividing by 3il^{2}edopstu undoes the multiplication by 3il^{2}edopstu.
M=-\frac{iE}{3edopstul^{2}}
Divide E by 3il^{2}edopstu.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}