Solve for g (complex solution)
\left\{\begin{matrix}g=\frac{2E-mv^{2}}{2hm}\text{, }&h\neq 0\text{ and }m\neq 0\\g\in \mathrm{C}\text{, }&\left(E=\frac{mv^{2}}{2}\text{ and }h=0\right)\text{ or }\left(E=0\text{ and }m=0\text{ and }h\neq 0\right)\end{matrix}\right.
Solve for g
\left\{\begin{matrix}g=\frac{2E-mv^{2}}{2hm}\text{, }&h\neq 0\text{ and }m\neq 0\\g\in \mathrm{R}\text{, }&\left(E=\frac{mv^{2}}{2}\text{ and }h=0\right)\text{ or }\left(E=0\text{ and }m=0\text{ and }h\neq 0\right)\end{matrix}\right.
Solve for E
E=\frac{m\left(v^{2}+2gh\right)}{2}
Share
Copied to clipboard
\frac{1}{2}mv^{2}+mgh=E
Swap sides so that all variable terms are on the left hand side.
mgh=E-\frac{1}{2}mv^{2}
Subtract \frac{1}{2}mv^{2} from both sides.
hmg=-\frac{mv^{2}}{2}+E
The equation is in standard form.
\frac{hmg}{hm}=\frac{-\frac{mv^{2}}{2}+E}{hm}
Divide both sides by mh.
g=\frac{-\frac{mv^{2}}{2}+E}{hm}
Dividing by mh undoes the multiplication by mh.
\frac{1}{2}mv^{2}+mgh=E
Swap sides so that all variable terms are on the left hand side.
mgh=E-\frac{1}{2}mv^{2}
Subtract \frac{1}{2}mv^{2} from both sides.
hmg=-\frac{mv^{2}}{2}+E
The equation is in standard form.
\frac{hmg}{hm}=\frac{-\frac{mv^{2}}{2}+E}{hm}
Divide both sides by mh.
g=\frac{-\frac{mv^{2}}{2}+E}{hm}
Dividing by mh undoes the multiplication by mh.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}