Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-2p^{2}-3p+900=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-2\right)\times 900}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-\left(-3\right)±\sqrt{9-4\left(-2\right)\times 900}}{2\left(-2\right)}
Square -3.
p=\frac{-\left(-3\right)±\sqrt{9+8\times 900}}{2\left(-2\right)}
Multiply -4 times -2.
p=\frac{-\left(-3\right)±\sqrt{9+7200}}{2\left(-2\right)}
Multiply 8 times 900.
p=\frac{-\left(-3\right)±\sqrt{7209}}{2\left(-2\right)}
Add 9 to 7200.
p=\frac{-\left(-3\right)±9\sqrt{89}}{2\left(-2\right)}
Take the square root of 7209.
p=\frac{3±9\sqrt{89}}{2\left(-2\right)}
The opposite of -3 is 3.
p=\frac{3±9\sqrt{89}}{-4}
Multiply 2 times -2.
p=\frac{9\sqrt{89}+3}{-4}
Now solve the equation p=\frac{3±9\sqrt{89}}{-4} when ± is plus. Add 3 to 9\sqrt{89}.
p=\frac{-9\sqrt{89}-3}{4}
Divide 3+9\sqrt{89} by -4.
p=\frac{3-9\sqrt{89}}{-4}
Now solve the equation p=\frac{3±9\sqrt{89}}{-4} when ± is minus. Subtract 9\sqrt{89} from 3.
p=\frac{9\sqrt{89}-3}{4}
Divide 3-9\sqrt{89} by -4.
-2p^{2}-3p+900=-2\left(p-\frac{-9\sqrt{89}-3}{4}\right)\left(p-\frac{9\sqrt{89}-3}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3-9\sqrt{89}}{4} for x_{1} and \frac{-3+9\sqrt{89}}{4} for x_{2}.
x ^ 2 +\frac{3}{2}x -450 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{3}{2} rs = -450
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{3}{4} - u s = -\frac{3}{4} + u
Two numbers r and s sum up to -\frac{3}{2} exactly when the average of the two numbers is \frac{1}{2}*-\frac{3}{2} = -\frac{3}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{3}{4} - u) (-\frac{3}{4} + u) = -450
To solve for unknown quantity u, substitute these in the product equation rs = -450
\frac{9}{16} - u^2 = -450
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -450-\frac{9}{16} = -\frac{7209}{16}
Simplify the expression by subtracting \frac{9}{16} on both sides
u^2 = \frac{7209}{16} u = \pm\sqrt{\frac{7209}{16}} = \pm \frac{\sqrt{7209}}{4}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{3}{4} - \frac{\sqrt{7209}}{4} = -21.976 s = -\frac{3}{4} + \frac{\sqrt{7209}}{4} = 20.476
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.