Solve for b
b=\frac{9D^{2}}{5}+\frac{40}{s}
s\neq 0
Solve for D (complex solution)
D=-\frac{\sqrt{5b-\frac{200}{s}}}{3}
D=\frac{\sqrt{5b-\frac{200}{s}}}{3}\text{, }s\neq 0
Solve for D
D=\frac{\sqrt{5b-\frac{200}{s}}}{3}
D=-\frac{\sqrt{5b-\frac{200}{s}}}{3}\text{, }\left(b\geq 0\text{ and }s<0\right)\text{ or }\left(s\geq \frac{40}{b}\text{ and }b>0\text{ and }s\neq 0\right)\text{ or }\left(s\geq \frac{40}{b}\text{ and }s<0\right)
Share
Copied to clipboard
D^{2}\times 1.8\times 2s=\left(-\frac{4}{2s}\right)\times 20\times 2s+2sb
Multiply both sides of the equation by 2s.
D^{2}\times 3.6s=\left(-\frac{4}{2s}\right)\times 20\times 2s+2sb
Multiply 1.8 and 2 to get 3.6.
D^{2}\times 3.6s=\left(-\frac{4}{2s}\right)\times 40s+2sb
Multiply 20 and 2 to get 40.
D^{2}\times 3.6s=\frac{-4\times 40}{2s}s+2sb
Express \left(-\frac{4}{2s}\right)\times 40 as a single fraction.
D^{2}\times 3.6s=\frac{-2\times 40}{s}s+2sb
Cancel out 2 in both numerator and denominator.
D^{2}\times 3.6s=\frac{-2\times 40s}{s}+2sb
Express \frac{-2\times 40}{s}s as a single fraction.
D^{2}\times 3.6s=-2\times 40+2sb
Cancel out s in both numerator and denominator.
D^{2}\times 3.6s=-80+2sb
Multiply -2 and 40 to get -80.
-80+2sb=D^{2}\times 3.6s
Swap sides so that all variable terms are on the left hand side.
2sb=D^{2}\times 3.6s+80
Add 80 to both sides.
2sb=\frac{18sD^{2}}{5}+80
The equation is in standard form.
\frac{2sb}{2s}=\frac{\frac{18sD^{2}}{5}+80}{2s}
Divide both sides by 2s.
b=\frac{\frac{18sD^{2}}{5}+80}{2s}
Dividing by 2s undoes the multiplication by 2s.
b=\frac{9D^{2}}{5}+\frac{40}{s}
Divide \frac{18D^{2}s}{5}+80 by 2s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}