Solve for a
a=\frac{5\left(D-h\right)}{4}
Solve for D
D=\frac{4a}{5}+h
Share
Copied to clipboard
\frac{4}{5}a+h=D
Swap sides so that all variable terms are on the left hand side.
\frac{4}{5}a=D-h
Subtract h from both sides.
\frac{\frac{4}{5}a}{\frac{4}{5}}=\frac{D-h}{\frac{4}{5}}
Divide both sides of the equation by \frac{4}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{D-h}{\frac{4}{5}}
Dividing by \frac{4}{5} undoes the multiplication by \frac{4}{5}.
a=\frac{5D-5h}{4}
Divide D-h by \frac{4}{5} by multiplying D-h by the reciprocal of \frac{4}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}