Solve for C
\left\{\begin{matrix}C=\frac{\sqrt{64c^{2}-D^{3}}}{D}\text{, }&D\neq 0\text{ and }D\leq 4c^{\frac{2}{3}}\\C\in \mathrm{R}\text{, }&D=0\text{ and }c=0\end{matrix}\right.
Share
Copied to clipboard
CD=\sqrt{\left(8c\right)^{2}-D^{3}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
CD=\sqrt{8^{2}c^{2}-D^{3}}
Expand \left(8c\right)^{2}.
CD=\sqrt{64c^{2}-D^{3}}
Calculate 8 to the power of 2 and get 64.
DC=\sqrt{64c^{2}-D^{3}}
The equation is in standard form.
\frac{DC}{D}=\frac{\sqrt{64c^{2}-D^{3}}}{D}
Divide both sides by D.
C=\frac{\sqrt{64c^{2}-D^{3}}}{D}
Dividing by D undoes the multiplication by D.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}