CAPM = 1.0 \% + 1.7 \times 5.0 \%
Solve for A
A=\frac{19}{200CMP}
M\neq 0\text{ and }P\neq 0\text{ and }C\neq 0
Solve for C
C=\frac{19}{200AMP}
M\neq 0\text{ and }P\neq 0\text{ and }A\neq 0
Share
Copied to clipboard
CAPM=\frac{1}{100}+1.7\times \frac{1}{20}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
CAPM=\frac{1}{100}+\frac{17}{200}
Multiply 1.7 and \frac{1}{20} to get \frac{17}{200}.
CAPM=\frac{19}{200}
Add \frac{1}{100} and \frac{17}{200} to get \frac{19}{200}.
CMPA=\frac{19}{200}
The equation is in standard form.
\frac{CMPA}{CMP}=\frac{\frac{19}{200}}{CMP}
Divide both sides by CPM.
A=\frac{\frac{19}{200}}{CMP}
Dividing by CPM undoes the multiplication by CPM.
A=\frac{19}{200CMP}
Divide \frac{19}{200} by CPM.
CAPM=\frac{1}{100}+1.7\times \frac{1}{20}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
CAPM=\frac{1}{100}+\frac{17}{200}
Multiply 1.7 and \frac{1}{20} to get \frac{17}{200}.
CAPM=\frac{19}{200}
Add \frac{1}{100} and \frac{17}{200} to get \frac{19}{200}.
AMPC=\frac{19}{200}
The equation is in standard form.
\frac{AMPC}{AMP}=\frac{\frac{19}{200}}{AMP}
Divide both sides by APM.
C=\frac{\frac{19}{200}}{AMP}
Dividing by APM undoes the multiplication by APM.
C=\frac{19}{200AMP}
Divide \frac{19}{200} by APM.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}